Skip to main content

Advertisement

Log in

FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Growing evidence indicates that the development and progression of multiple complex diseases are influenced by microRNA (miRNA). Identifying more miRNAs as biomarkers for clinical diagnosis, treatment and prognosis is vital to promote the development of bioinformatics and medicine. Considering that the traditional biological experimental methods are generally time-consuming and expensive, high-efficient computational methods are encouraged to uncover potential disease-related miRNAs. In this paper, FCGCNMDA is presented to predict latent miRNA-disease associations by utilizing fully connected graph convolutional networks. Specially, our method first constructs a fully connected graph in which edge weights represent correlation coefficient between any two pairs of miRNA-disease pair, and then feeds this fully connected graph along with miRNA-disease pairs feature matrix into a two-layer graph convolutional networks (GCN) for training. At last, we utilize the trained network to predict the scores for unknown miRNA-disease pairs. As a result, FCGCNMDA achieves AUC value of \(92.85 \pm 0.71{\text{\% }}\) and AUPRC value of \(92.55{\text{\% }}\) in HMDD v2.0 based on five-fold cross validation. Moreover, case studies on Lymphoma, Breast Neoplasms and Prostate Neoplasms shown that 98%, 98%, 98% of the top 50 selected miRNAs were validated by recent experimental evidence. From above results, we can deduce that FCGCNMDA can be regarded as reliable method for potential miRNA-disease associations prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abu-El-Haija S, Kapoor A, Perozzi B, Lee J (2018) N-GCN: Multi-scale Graph Convolution for Semi-supervised Node Classification. arXiv e-prints, p arXiv:1802.08888

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    CAS  PubMed  Google Scholar 

  • Barajas Torres RL, Domínguez Cruz MD, Borjas Gutiérrez C, Ramírez Dueñas MdL, Magaña Torres MT, González García JR (2016) 1,2:3,4-diepoxybutane induces multipolar mitosis in cultured human lymphocytes. Cytogenet Genome Res 148:179–184

    CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  • Bartel DP (2018) Metazoan microRNAs. Cell 173:20–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    CAS  PubMed  Google Scholar 

  • Chen X, Liu MX, Yan GY (2012) RWRMDA: predicting novel human microRNA-disease associations. Mol Biosyst 8:2792–2798

    CAS  PubMed  Google Scholar 

  • Chen X, Yan CC, Zhang X, You ZH, Deng L, Liu Y, Zhang Y, Dai Q (2016) WBSMDA: within and between score for MiRNA-disease association prediction. Sci Rep 6:21106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Gong Y, Zhang DH, You ZH, Li ZW (2018a) DRMDA: deep representations-based miRNA-disease association prediction. J Cell Mol Med 22:472–485

    CAS  PubMed  Google Scholar 

  • Chen X, Wang CC, Yin J, You ZH (2018b) Novel human miRNA-disease association inference based on random forest. Mol Ther Nucleic Acids 13:568–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Q, Yu Z, Purisima EO, Wang E (2006) Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2:46

    PubMed  PubMed Central  Google Scholar 

  • D'Aiuto F, Callari M, Dugo M, Merlino G, Musella V, Miodini P, Paolini B, Cappelletti V, Daidone MG (2015) miR-30e* is an independent subtype-specific prognostic marker in breast cancer. Br J Cancer 113:290–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan S, Zhu J, Han X, Shi C, Hu L, Ma B, Li Y (2019) Metapath-guided heterogeneous graph neural network for intent recommendation. In: Proceedings of the 25th ACM SIGKDD International conference on knowledge discovery and data mining. Association for computing machinery, anchorage, AK, USA, pp 2478–2486

  • Gehring J, Auli M, Grangier D, Dauphin YN (2016) A convolutional encoder model for neural machine translation. arXiv preprint arXiv:1611.02344

  • Goh JN, Loo SY, Datta A, Siveen KS, Yap WN, Cai W, Shin EM, Wang C, Kim JE, Chan M, Dharmarajan AM, Lee AS, Lobie PE, Yap CT, Kumar AP (2016) microRNAs in breast cancer: regulatory roles governing the hallmarks of cancer. Biol Rev Camb Philos Soc 91:409–428

    PubMed  Google Scholar 

  • Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. Adv Neural Inform Process Syst, pp 1024–1034

  • He N, Zheng H, Li P, Zhao Y, Zhang W, Song F, Chen K (2014) miR-485-5p binding site SNP rs8752 in HPGD gene is associated with breast cancer risk. PLoS ONE 9:e102093

    PubMed  PubMed Central  Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  • Hu H, Zhang L, Ai H, Zhang H, Fan Y, Zhao Q, Liu H (2018) HLPI-ensemble: prediction of human lncRNA-protein interactions based on ensemble strategy. RNA Biol 15:797–806

    PubMed  PubMed Central  Google Scholar 

  • Ikeda K, Horie-Inoue K, Ueno T, Suzuki T, Sato W, Shigekawa T, Osaki A, Saeki T, Berezikov E, Mano H, Inoue S (2015) miR-378a-3p modulates tamoxifen sensitivity in breast cancer MCF-7 cells through targeting GOLT1A. Sci Rep 5:13170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isobe T, Hisamori S, Hogan DJ, Zabala M, Hendrickson DG, Dalerba P, Cai S, Scheeren F, Kuo AH, Sikandar SS, Lam JS, Qian D, Dirbas FM, Somlo G, Lao K, Brown PO, Clarke MF, Shimono Y (2014) miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. elife 3:e01977

    PubMed Central  Google Scholar 

  • Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–104

    CAS  PubMed  Google Scholar 

  • Jiang Q, Hao Y, Wang G, Juan L, Zhang T, Teng M, Liu Y, Wang Y (2010) Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst Biol 4:S2

    PubMed  PubMed Central  Google Scholar 

  • Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv e-prints, p arXiv:1412.6980

  • Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv e-prints, arXiv:1609.02907

  • Kozomara A, Birgaoanu M, Griffiths-Jones S (2018) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162

    PubMed Central  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    CAS  PubMed  Google Scholar 

  • Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2013) HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42:D1070–D1074

    PubMed  PubMed Central  Google Scholar 

  • Li Q, Han Z, Wu X-M (2018) Deeper insights into graph convolutional networks for semi-supervised learning. arXiv e-prints, arXiv:1801.07606

  • Li C, Liu H, Hu Q, Que J, Yao J (2019a) A novel computational model for predicting microRNA-disease associations based on heterogeneous graph convolutional networks. Cells 8:977

    CAS  PubMed Central  Google Scholar 

  • Li Z, Nie R, You Z, Zhao Y, Ge X, Wang Y (2019b) LRMDA: using logistic regression and random walk with restart for MiRNA-disease association prediction. In: Huang D-S, Jo K-H, Huang Z-K (eds) Intelligent computing theories and application. Springer International Publishing, Cham, pp 283–293

    Google Scholar 

  • Liu H, Ren G, Chen H, Liu Q, Yang Y, Zhao Q (2020) Predicting lncRNA–miRNA interactions based on logistic matrix factorization with neighborhood regularized. Knowl-Based Syst 191:105261

    Google Scholar 

  • Lo UG, Yang D, Hsieh J-T (2013) The role of microRNAs in prostate cancer progression. Transl Androl Urol 2:228–241

    PubMed  PubMed Central  Google Scholar 

  • Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  • Looney AM, Walsh BH, Moloney G, Grenham S, Fagan A, O'Keeffe GW, Clarke G, Cryan JF, Dinan TG, Boylan GB, Murray DM (2015) Downregulation of umbilical cord blood levels of miR-374a in neonatal hypoxic ischemic encephalopathy. J Pediatr 167:269–273.e262

    CAS  PubMed  Google Scholar 

  • Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q (2008) An analysis of human microRNA and disease associations. PLoS ONE 3:e3420–e3420

    PubMed  PubMed Central  Google Scholar 

  • Miska EA (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15:563–568

    CAS  PubMed  Google Scholar 

  • Mork S, Pletscher-Frankild S, Palleja Caro A, Gorodkin J, Jensen LJ (2014) Protein-driven inference of miRNA-disease associations. Bioinformatics 30:392–397

    CAS  PubMed  Google Scholar 

  • Nayak LM, Deschler DG (2003) Lymphomas. Otolaryngol Clin North Am 36:625–646

    PubMed  Google Scholar 

  • Parisot S, Ktena SI, Ferrante E, Lee M, Guerrerro Moreno R, Glocker B, Rueckert D (2017) Spectral graph convolutions for population-based disease prediction. arXiv e-prints, arXiv:1703.03020

  • Pasquier C, Gardes J (2016) Prediction of miRNA-disease associations with a vector space model. Sci Rep 6:27036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pesquita C, Faria D, Falcão AO, Lord P, Couto FM (2009) Semantic similarity in biomedical ontologies. PLoS Comput Biol 5:e1000443

    PubMed  PubMed Central  Google Scholar 

  • Ralfkiaer U, Lindahl LM, Litman T, Gjerdrum LM, Ahler CB, Gniadecki R, Marstrand T, Fredholm S, Iversen L, Wasik MA, Bonefeld CM, Geisler C, Krejsgaard T, Glue C, Røpke MA, Woetmann A, Skov L, Grønbæk K, Odum N (2014) MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T cell lymphoma. Anticancer Res 34:7207–7217

    CAS  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    CAS  PubMed  Google Scholar 

  • Sandoval J, Díaz-Lagares A, Salgado R, Servitje O, Climent F, Ortiz-Romero PL, Pérez-Ferriols A, Garcia-Muret MP, Estrach T, Garcia M, Nonell L, Esteller M, Pujol RM, Espinet B, Gallardo F (2015) MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T cell lymphoma. J Invest Dermatol 135:1128–1137

    CAS  PubMed  Google Scholar 

  • Shi H, Xu J, Zhang G, Xu L, Li C, Wang L, Zhao Z, Jiang W, Guo Z, Li X (2013) Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes. BMC Syst Biol 7:101

    PubMed  PubMed Central  Google Scholar 

  • Shi M, Tang Y, Zhu X, Liu J (2019) Multi-label graph convolutional network representation learning. arXiv e-prints, arXiv:1912.11757

  • Tanaka K, Miyata H, Sugimura K, Fukuda S, Kanemura T, Yamashita K, Miyazaki Y, Takahashi T, Kurokawa Y, Yamasaki M, Wada H, Nakajima K, Takiguchi S, Mori M, Doki Y (2015) miR-27 is associated with chemoresistance in esophageal cancer through transformation of normal fibroblasts to cancer-associated fibroblasts. Carcinogenesis 36:894–903

    CAS  PubMed  Google Scholar 

  • Tanic M, Yanowski K, Gómez-López G, Rodriguez-Pinilla MS, Marquez-Rodas I, Osorio A, Pisano DG, Martinez-Delgado B, Benítez J (2015) MicroRNA expression signatures for the prediction of BRCA1/2 mutation-associated hereditary breast cancer in paraffin-embedded formalin-fixed breast tumors. Int J Cancer 136:593–602

    CAS  PubMed  Google Scholar 

  • van Laarhoven T, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27:3036–3043

    PubMed  Google Scholar 

  • Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2017) Graph attention networks. arXiv e-prints, arXiv:1710.10903

  • Wang D, Wang J, Lu M, Song F, Cui Q (2010) Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26:1644–1650

    CAS  PubMed  Google Scholar 

  • Wang B, Li J, Sun M, Sun L, Zhang X (2014) miRNA expression in breast cancer varies with lymph node metastasis and other clinicopathologic features. IUBMB Life 66:371–377

    PubMed  Google Scholar 

  • Wang X, Ji H, Shi C, Wang B, Cui P, Yu P, Ye Y (2019) Heterogeneous Graph Attention Network. arXiv e-prints, arXiv:1903.07293

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    CAS  PubMed  Google Scholar 

  • Winsel S, Mäki-Jouppila J, Tambe M, Aure MR, Pruikkonen S, Salmela AL, Halonen T, Leivonen SK, Kallio L, Børresen-Dale AL, Kallio MJ (2014) Excess of miRNA-378a-5p perturbs mitotic fidelity and correlates with breast cancer tumourigenesis in vivo. Br J Cancer 111:2142–2151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Zeng R, Wu S, Zhong J, Yang L, Xu J (2015) Comprehensive expression analysis of miRNA in breast cancer at the miRNA and isomiR levels. Gene 557:195–200

    CAS  PubMed  Google Scholar 

  • Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2019) A comprehensive survey on graph neural networks. arXiv e-prints, arXiv:1901.00596

  • Xu P, Guo M, Hay BA (2004) MicroRNAs and the regulation of cell death. Trends Genet 20:617–624

    CAS  PubMed  Google Scholar 

  • Xu C, Ping Y, Li X, Zhao H, Wang L, Fan H, Xiao Y, Li X (2014) Prioritizing candidate disease miRNAs by integrating phenotype associations of multiple diseases with matched miRNA and mRNA expression profiles. Mol Biosyst 10:2800–2809

    CAS  PubMed  Google Scholar 

  • Xuan P, Han K, Guo M, Guo Y, Li J, Ding J, Liu Y, Dai Q, Li J, Teng Z, Huang Y (2013) Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors. PLoS ONE 8:e70204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Ren F, Liu C, He S, Sun G, Gao Q, Yao L, Zhang Y, Miao R, Cao Y, Zhao Y, Zhong Y, Zhao H (2010) dbDEMC: a database of differentially expressed miRNAs in human cancers. BMC Genomics 11(Suppl 4):S5–S5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Fu X, Qu W, Xiao Y, Shen HB (2018) MiRGOFS: a GO-based functional similarity measurement for miRNAs, with applications to the prediction of miRNA subcellular localization and miRNA-disease association. Bioinformatics 34:3547–3556

    CAS  PubMed  Google Scholar 

  • Yao L, Mao C, Luo Y (2018) Graph convolutional networks for text classification. arXiv e-prints, arXiv:1809.05679

  • Yu SP, Liang C, Xiao Q, Li GH, Ding PJ, Luo JW (2019) MCLPMDA: a novel method for miRNA-disease association prediction based on matrix completion and label propagation. J Cell Mol Med 23:1427–1438

    CAS  PubMed  Google Scholar 

  • Zeng X, Liu L, Lü L, Zou Q (2018) Prediction of potential disease-associated microRNAs using structural perturbation method. Bioinformatics 34:2425–2432

    CAS  PubMed  Google Scholar 

  • Zhang Z, Cui P, Zhu W (2018) Deep learning on graphs: a survey. arXiv e-prints, arXiv:1812.04202

  • Zhang K, Guo L (2018) MiR-767 promoted cell proliferation in human melanoma by suppressing CYLD expression. Gene 641:272–278

    CAS  PubMed  Google Scholar 

  • Zhang B, Wang Q, Pan X (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289

    CAS  PubMed  Google Scholar 

  • Zheng K, You Z-H, Wang L, Zhou Y, Li L-P, Li Z-W (2019) MLMDA: a machine learning approach to predict and validate MicroRNA-disease associations by integrating of heterogenous information sources. J Transl Med 17:260–260

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported in part by the National Natural Science Foundation of China, under Grants 61722212, 61873270, 61902337, 61732012 and 61972399. The publication costs are funded by the grant 61722212. The funders have no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. The authors would like to thank all anonymous reviewers for their constructive advices.

Author information

Authors and Affiliations

Authors

Contributions

Z-WL and RN conceived the algorithm, carried out the analyses, prepared the data sets, carried out experiments, and wrote the manuscript. J-SL, Z-HY and W-ZB designed, performed and analyzed experiments and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhengwei Li or Ru Nie.

Ethics declarations

Conflicts of interest

Jiashu Li declares that he has no conflict of interest. Zhengwei Li declares that he has no conflict of interest. Ru Nie declares that she has no conflict of interest. Zhuhong You declares that he has no conflict of interest. Wenzhang Bao declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by: Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, Z., Nie, R. et al. FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks. Mol Genet Genomics 295, 1197–1209 (2020). https://doi.org/10.1007/s00438-020-01693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-020-01693-7

Keywords

Navigation