Skip to main content
Log in

TUPDB: Target-Unrelated Peptide Data Bank

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The isolation of target-unrelated peptides (TUPs) through biopanning remains as a major problem of phage display selection experiments. These TUPs do not have any actual affinity toward targets of interest, which tend to be mistakenly identified as target-binding peptides. Therefore, an information portal for storing TUP data is urgently needed. Here, we present a TUP data bank (TUPDB), which is a comprehensive, manually curated database of approximately 73 experimentally verified TUPs and 1963 potential TUPs collected from TUPScan, the BDB database, and public research articles. The TUPScan tool has been integrated in TUPDB to facilitate TUP analysis. We believe that TUPDB can help identify and remove TUPs in future reports in the biopanning community. The database is of great importance to improving the quality of phage display-based epitope mapping and promoting the development of vaccines, diagnostics, and therapeutics. The TUPDB database is available at http://i.uestc.edu.cn/tupdb.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

https://i.uestc.edu.cn/tupdb/index.html

References

  1. He B, Mao C, Ru B, Han H, Zhou P, Huang J (2013) Epitope mapping of metuximab on CD147 using phage display and molecular docking. Comput Math Methods Med 2013:983829. https://doi.org/10.1155/2013/983829

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huang J, He B, Zhou P (2014) Mimotope-based prediction of B-cell epitopes. Methods Mol Biol 1184:237–243. https://doi.org/10.1007/978-1-4939-1115-8_13

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, He B, Liu K, Ning L, Luo D, Xu K, Zhu W, Wu Z, Huang J, Xu X (2017) A novel peptide specifically binding to VEGF receptor suppresses angiogenesis in vitro and in vivo. Signal Transduct Target Ther 2:17010. https://doi.org/10.1038/sigtrans.2017.10

    Article  PubMed  PubMed Central  Google Scholar 

  4. He B, Dzisoo AM, Derda R, Huang J (2019) Development and application of computational methods in phage display technology. Curr Med Chem 26(42):7672–7693. https://doi.org/10.2174/0929867325666180629123117

    Article  CAS  PubMed  Google Scholar 

  5. Martins IM, Reis RL, Azevedo HS (2016) Phage display technology in biomaterials engineering: progress and opportunities for applications in regenerative medicine. ACS Chem Biol 11(11):2962–2980. https://doi.org/10.1021/acschembio.5b00717

    Article  CAS  PubMed  Google Scholar 

  6. Bakhshinejad B, Zade HM, Shekarabi HS, Neman S (2016) Phage display biopanning and isolation of target-unrelated peptides: in search of nonspecific binders hidden in a combinatorial library. Amino Acids 48(12):2699–2716. https://doi.org/10.1007/s00726-016-2329-6

    Article  CAS  PubMed  Google Scholar 

  7. Zade HM, Keshavarz R, Shekarabi HSZ, Bakhshinejad B (2017) Biased selection of propagation-related TUPs from phage display peptide libraries. Amino Acids 49(8):1293–1308. https://doi.org/10.1007/s00726-017-2452-z

    Article  CAS  PubMed  Google Scholar 

  8. Thomas WD, Golomb M, Smith GP (2010) Corruption of phage display libraries by target-unrelated clones: diagnosis and countermeasures. Anal Biochem 407(2):237–240. https://doi.org/10.1016/j.ab.2010.07.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brammer LA, Bolduc B, Kass JL, Felice KM, Noren CJ, Hall MF (2008) A target-unrelated peptide in an M13 phage display library traced to an advantageous mutation in the gene II ribosome-binding site. Anal Biochem 373(1):88–98. https://doi.org/10.1016/j.ab.2007.10.015

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen KT, Adamkiewicz MA, Hebert LE, Zygiel EM, Boyle HR, Martone CM, Melendez-Rios CB, Noren KA, Noren CJ, Hall MF (2014) Identification and characterization of mutant clones with enhanced propagation rates from phage-displayed peptide libraries. Anal Biochem 462:35–43. https://doi.org/10.1016/j.ab.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  11. Zygiel EM, Noren KA, Adamkiewicz MA, Aprile RJ, Bowditch HK, Carroll CL, Cerezo MAS, Dagher AM, Hebert CR, Hebert LE, Mahame GM, Milne SC, Silvestri KM, Sutherland SE, Sylvia AM, Taveira CN, VanValkenburgh DJ, Noren CJ, Hall MF (2017) Various mutations compensate for a deleterious lacZalpha insert in the replication enhancer of M13 bacteriophage. PLoS ONE 12(4):e0176421. https://doi.org/10.1371/journal.pone.0176421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matochko WL, Cory Li S, Tang SK, Derda R (2014) Prospective identification of parasitic sequences in phage display screens. Nucleic Acids Res 42(3):1784–1798. https://doi.org/10.1093/nar/gkt1104

    Article  CAS  PubMed  Google Scholar 

  13. Ru B, Huang J, Dai P, Li S, Xia Z, Ding H, Lin H, Guo F, Wang X (2010) MimoDB: a new repository for mimotope data derived from phage display technology. Molecules 15(11):8279–8288. https://doi.org/10.3390/molecules15118279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang J, Ru B, Zhu P, Nie F, Yang J, Wang X, Dai P, Lin H, Guo FB, Rao N (2012) MimoDB 2.0: a mimotope database and beyond. Nucleic Acids Res 40 (Database issue):D271–D277. https://doi.org/10.1093/nar/gkr922

  15. He B, Chai G, Duan Y, Yan Z, Qiu L, Zhang H, Liu Z, He Q, Han K, Ru B, Guo FB, Ding H, Lin H, Wang X, Rao N, Zhou P, Huang J (2016) BDB: biopanning data bank. Nucleic Acids Res 44(D1):D1127–D1132. https://doi.org/10.1093/nar/gkv1100

    Article  CAS  PubMed  Google Scholar 

  16. He B, Jiang L, Duan Y, Chai G, Fang Y, Kang J, Yu M, Li N, Tang Z, Yao P, Wu P, Derda R, Huang J (2018) Biopanning data bank 2018: hugging next generation phage display. Database 2018:bay032. https://doi.org/10.1093/database/bay032

    Article  CAS  PubMed Central  Google Scholar 

  17. Khatun S, Hasan M, Kurata H (2019) Efficient computational model for identification of antitubercular peptides by integrating amino acid patterns and properties. FEBS Lett 593(21):3029–3039. https://doi.org/10.1002/1873-3468.13536

    Article  CAS  PubMed  Google Scholar 

  18. Hasan MM, Khatun MS, Kurata H (2020) iLBE for computational identification of linear B-cell epitopes by integrating sequence and evolutionary features. Genomics Proteomics Bioinformatics. https://doi.org/10.1016/j.gpb.2019.04.004

    Article  PubMed  Google Scholar 

  19. Khatun MS, Hasan MM, Shoombuatong W, Kurata H (2020) ProIn-Fuse: improved and robust prediction of proinflammatory peptides by fusing of multiple feature representations. J Comput Aided Mol Des 34(12):1229–1236. https://doi.org/10.1007/s10822-020-00343-9

    Article  CAS  PubMed  Google Scholar 

  20. Jiang L, Yu M, Zhou Y, Tang Z, Li N, Kang J, He B, Huang J (2020) AGONOTES: a robot annotator for Argonaute proteins. Interdis Sci 12(1):109–116. https://doi.org/10.1007/s12539-019-00349-4

    Article  CAS  Google Scholar 

  21. Dzisoo AM, He B, Karikari R, Agoalikum E, Huang J (2019) CISI: a tool for predicting cross-interaction or self-interaction of monoclonal antibodies using sequences. Interdis Sci 11(4):691–697. https://doi.org/10.1007/s12539-019-00330-1

    Article  CAS  Google Scholar 

  22. Kang J, Fang Y, Yao P, Li N, Tang Q, Huang J (2019) NeuroPP: a tool for the prediction of Neuropeptide precursors based on optimal sequence composition. Interdis Sci 11(1):108–114. https://doi.org/10.1007/s12539-018-0287-2

    Article  CAS  Google Scholar 

  23. He B, Huang J, Chen H (2019) PVsiRNAPred: Prediction of plant exclusive virus-derived small interfering RNAs by deep convolutional neural network. J Bioinform Comput Biol 17(6):1950039. https://doi.org/10.1142/S0219720019500392

    Article  CAS  PubMed  Google Scholar 

  24. Cui Y, Xu J, Cheng M, Liao X, Peng S (2018) Review of CRISPR/Cas9 sgRNA design tools. Interdis Sci 10(2):455–465. https://doi.org/10.1007/s12539-018-0298-z

    Article  CAS  Google Scholar 

  25. Zhang P, Meng J, Luan Y, Liu C (2020) Plant miRNA-lncRNA interaction prediction with the ensemble of CNN and IndRNN. Interdis Sci 12(1):82–89. https://doi.org/10.1007/s12539-019-00351-w

    Article  CAS  Google Scholar 

  26. Mandava S, Makowski L, Devarapalli S, Uzubell J, Rodi DJ (2004) RELIC–a bioinformatics server for combinatorial peptide analysis and identification of protein-ligand interaction sites. Proteomics 4(5):1439–1460. https://doi.org/10.1002/pmic.200300680

    Article  CAS  PubMed  Google Scholar 

  27. Huang J, Ru B, Li S, Lin H, Guo FB (2010) SAROTUP: scanner and reporter of target-unrelated peptides. J Biomed Biotechnol 2010:101932. https://doi.org/10.1155/2010/101932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He B, Chen H, Li N, Huang J (2019) SAROTUP: a suite of tools for finding potential target-unrelated peptides from phage display data. Int J Biol Sci 15(7):1452–1459. https://doi.org/10.7150/ijbs.31957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number: 61901130, 61901129, and 62071099), the 2018 Talent Research Program of Guizhou University (grant numbers: (2018)54 and (2018)55), the Science and Technology Plan Project of Guizhou Province of China (grant numbers: (2018)5781, [2020]1Y407, and [2020] 1Y345), and the China Postdoctoral Science Foundation Grant (grant numbers: 2019M653369 and 2019M660236).

Author information

Authors and Affiliations

Authors

Contributions

B. H., S. Y., J. L., X. C., Q. Z., and H. C. developed the web interface of the database. B. H. collected and curated the data. H. C. and B. H. wrote the manuscript. B. H., J. H., and H. G. conceived the idea and coordinated the project.

Corresponding authors

Correspondence to Bifang He, Heng Chen or Jian Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Yang, S., Long, J. et al. TUPDB: Target-Unrelated Peptide Data Bank. Interdiscip Sci Comput Life Sci 13, 426–432 (2021). https://doi.org/10.1007/s12539-021-00436-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00436-5

Keywords

Navigation