Skip to main content

Next-Generation Phage Display to Identify Peptide Ligands of Deubiquitinases

  • Protocol
  • First Online:
Deubiquitinases

Abstract

Phage display (PD) is a powerful method and has been extensively used to generate monoclonal antibodies and identify epitopes, mimotopes, and protein interactions. More recently, the combination of next-generation sequencing (NGS) with PD (NGPD) has revolutionized the capabilities of the method by creating large data sets of sequences from affinity selection-based approaches (biopanning) otherwise challenging to obtain. NGPD can monitor motif enrichment, allow tracking of the selection process over consecutive rounds, and highlight unspecific binders. To tackle the wealth of data obtained, bioinformatics tools have been developed that allow for identifying specific binding sequences (binders) that can then be validated. Here, we provide a detailed account of the use of NGPD experiments to identify ubiquitin-specific protease peptide ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mevissen TET, Komander D (2017) Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem 86:159–192

    Article  CAS  PubMed  Google Scholar 

  2. Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Remenyi A, Good MC, Lim WA (2006) Docking interactions in protein kinase and phosphatase networks. Curr Opin Struct Biol 16:676–685

    Article  CAS  PubMed  Google Scholar 

  4. Pozhidaeva AK et al (2015) Structural characterization of interaction between human ubiquitin-specific protease 7 and immediate-early protein ICP0 of herpes simplex Virus-1. J Biol Chem 290:22907–22918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang ZM et al (2015) An allosteric interaction links USP7 to Deubiquitination and chromatin targeting of UHRF1. Cell Rep 12:1400–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng J et al (2015) Molecular mechanism for the substrate recognition of USP7. Protein Cell 6:849–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ngubane NA et al (2013) High-throughput sequencing enhanced phage display identifies peptides that bind mycobacteria. PLoS One 8:e77844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. AC’t Hoen P et al (2012) Phage display screening without repetitious selection rounds. Anal Biochem 421:622–631

    Article  PubMed  Google Scholar 

  9. Spiliotopoulos A et al (2019) Discovery of peptide ligands targeting a specific ubiquitin-like domain-binding site in the deubiquitinase USP11. J Biol Chem 294:424–436

    Article  CAS  PubMed  Google Scholar 

  10. Fagerlund A, Myrset AH, Kulseth MA (2008) Construction and characterization of a 9-mer phage display pVIII-library with regulated peptide density. Appl Microbiol Biotechnol 80:925–936

    Article  CAS  PubMed  Google Scholar 

  11. Noren KA, Noren CJ (2001) Construction of high-complexity combinatorial phage display peptide libraries. Methods 23:169–178

    Article  CAS  PubMed  Google Scholar 

  12. Heinis C, Rutherford T, Freund S, Winter G (2009) Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat Chem Biol 5:502–507

    Article  CAS  PubMed  Google Scholar 

  13. Tharp JM et al (2020) An amber obligate active site-directed ligand evolution technique for phage display. Nat Commun 11:1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qi H et al (2021) Antibody binding epitope mapping (AbMap) of hundred antibodies in a single run. Mol Cell Proteomics 20:100059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ting JP et al (2018) Utilization of peptide phage display to investigate hotspots on IL-17A and what it means for drug discovery. PLoS One 13:e0190850

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cao J et al (2021) Phage-display based discovery and characterization of peptide ligands against WDR5. Molecules 26:1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gubeli RJ et al (2021) In vitro-evolved peptides bind monomeric actin and mimic actin-binding protein thymosin-beta4. ACS Chem Biol 16:820–828

    Article  CAS  PubMed  Google Scholar 

  18. Ashkenazy H et al (2021) Motifier: an IgOme profiler based on peptide motifs using machine learning. J Mol Biol 433:167071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Felici F, Castagnoli L, Musacchio A, Jappelli R, Cesareni G (1991) Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J Mol Biol 222:301–310

    Article  CAS  PubMed  Google Scholar 

  20. Shen W, Le S, Li Y, Hu F (2016) SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 11:e0163962

    Article  PubMed  PubMed Central  Google Scholar 

  21. FastX-Toolkit. http://hannonlab.cshl.edu/fastx_toolkit/

  22. Dodt M, Roehr JT, Ahmed R, Dieterich C (2012) FLEXBAR-flexible barcode and adapter processing for next-generation sequencing platforms. Biology (Basel) 1:895–905

    Google Scholar 

  23. Tange O (2011) GNU parallel - the command-line power tool. USENIX Mag 2011:32–47

    Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Nottingham and the Biotechnology and Biological Sciences Research Council (BBSRC) doctoral training studentships [grant number BB/M008770/1].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kevin C. Gough or Ingrid Dreveny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Spiliotopoulos, A. et al. (2023). Next-Generation Phage Display to Identify Peptide Ligands of Deubiquitinases. In: Maupin-Furlow, J., Edelmann, M.J. (eds) Deubiquitinases. Methods in Molecular Biology, vol 2591. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2803-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2803-4_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2802-7

  • Online ISBN: 978-1-0716-2803-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics