Skip to main content

Advertisement

Log in

Popular Computational Tools Used for miRNA Prediction and Their Future Development Prospects

  • Review
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are 19–24 nucleotide (nt)-long noncoding, single-stranded RNA molecules that play significant roles in regulating the gene expression, growth, and development of plants and animals. From the year that miRNAs were first discovered until the beginning of the twenty-first century, researchers used experimental methods such as cloning and sequencing to identify new miRNAs and their roles in the posttranscriptional regulation of protein synthesis. Later, in the early 2000s, informatics approaches to the discovery of new miRNAs began to be implemented. With increasing knowledge about miRNA, more efficient algorithms have been developed for computational miRNA prediction. The miRNA research community, hoping for greater coverage and faster results, has shifted from cumbersome and expensive traditional experimental approaches to computational approaches. These computational methods started with homology-based comparisons of known miRNAs with orthologs in the genomes of other species; this method could identify a known miRNA in new species. Second-generation sequencing and next-generation sequencing of mRNA at different developmental stages and in specific tissues, in combination with a better search and alignment algorithm, have accelerated the process of predicting novel miRNAs in a particular species. Using the accumulated annotated miRNA sequence information, researchers have been able to design ab initio algorithms for miRNA prediction independent of genome sequence knowledge. Here, the methods recently used for miRNA computational prediction are summarized and classified into the following four categories: homology-based, target-based, scoring-based, and machine-learning-based approaches. Finally, the future developmental directions of miRNA prediction methods are discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Casari G, De Daruvar A, Sander C, Schneider R (1996) Bioinformatics and the discovery of gene function. Trends Genet 12(7):244–245. https://doi.org/10.1016/0168-9525(96)30057-7

    Article  CAS  PubMed  Google Scholar 

  2. Riffo-Campos ÁL, Riquelme I, Brebi-Mieville P (2016) Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci 17(12):1987. https://doi.org/10.3390/ijms17121987

    Article  CAS  PubMed Central  Google Scholar 

  3. Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Lett 579(26):5904–5910. https://doi.org/10.1016/j.febslet.2005.09.040

    Article  CAS  PubMed  Google Scholar 

  4. Thomassen GOS, Røsok O, Rognes T (2006) Computational prediction of microRNAs encoded in viral and other genomes. J Biomed Biotechnol 4:95270. https://doi.org/10.1155/JBB/2006/95270

    Article  CAS  Google Scholar 

  5. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385. https://doi.org/10.1038/nrm1644

    Article  CAS  PubMed  Google Scholar 

  6. Simonson B, Das S (2015) MicroRNA therapeutics: the next magic bullet? Mini Rev Med Chem 15(6):467–474. https://doi.org/10.2174/1389557515666150324123208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pasquinelli AE, Ruvkun G (2002) Control of developmental timing by micrornas and their targets. Annu Rev Cell Dev Biol 18:495–513. https://doi.org/10.1146/annurev.cellbio.18.012502.105832

    Article  CAS  PubMed  Google Scholar 

  8. Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM, Ruvkun G, Kim J (2003) Computational and experimental identification of C. elegans microRNAs. Mol Cell 11(5):1253–1263. https://doi.org/10.1016/s1097-2765(03)00153-9

    Article  CAS  PubMed  Google Scholar 

  9. Banerjee D, Slack F (2002) Control of developmental timing by small temporal RNAs: a paradigm for RNA-mediated regulation of gene expression. BioEssays 24(2):119–129. https://doi.org/10.1002/bies.10046

    Article  CAS  PubMed  Google Scholar 

  10. Wang L, Mai Y, Zhang Y, Luo Q, Yang H (2010) MicroRNA171c-Targeted SCL6-II, SCL6-III, and SCL6-IV Genes Regulate Shoot Branching in Arabidopsis. Mol Plant 3(5):794–806. https://doi.org/10.1093/mp/ssq042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443. https://doi.org/10.1016/j.ccr.2006.04.020

    Article  CAS  PubMed  Google Scholar 

  12. Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9(6):1327–1333. https://doi.org/10.1016/s1097-2765(02)00541-5

    Article  CAS  PubMed  Google Scholar 

  13. Ruvkun G (2001) Molecular biology. Glimpses of a tiny RNA world. Science 294(5543):797–799. https://doi.org/10.1126/science.1066315

    Article  CAS  PubMed  Google Scholar 

  14. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862. https://doi.org/10.1126/science.1065062

    Article  CAS  PubMed  Google Scholar 

  15. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906. https://doi.org/10.1038/35002607

    Article  CAS  PubMed  Google Scholar 

  16. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16(13):1616–1626. https://doi.org/10.1101/gad.1004402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krol J, Krzyzosiak WJ (2006) Structure analysis of microRNA precursors. Methods Mol Biol 342:19–32. https://doi.org/10.1385/1-59745-123-1:19

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Zhang J, Li F, Gu J, He T, Zhang X, Li Y (2005) MicroRNA identification based on sequence and structure alignment. Bioinformatics 21(18):3610–3614. https://doi.org/10.1093/bioinformatics/bti562

    Article  CAS  PubMed  Google Scholar 

  19. Wang WC, Lin FM, Chang WC, Lin KY, Huang HD, Lin NS (2009) miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics 10:328. https://doi.org/10.1186/1471-2105-10-328

  20. Lazzari B, Caprera A, Cestaro A et al (2009) Ontology-oriented retrieval of putative microRNAs in Vitis vinifera via GrapeMiRNA: a web database of de novo predicted grape microRNAs. BMC Plant Biol 9:82. https://doi.org/10.1186/1471-2229-9-82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003) The microRNAs of Caenorhabditis elegans. Genes Dev. 7(8):991–1008. https://doi.org/10.1101/gad.1074403

    Article  CAS  Google Scholar 

  22. Lai EC, Tomancak P, Williams RW, Rubin GM (2003) Computational identification of drosophila microRNA genes. Genome Biol 4(7):R42. https://doi.org/10.1186/gb-2003-4-7-r42

    Article  PubMed  PubMed Central  Google Scholar 

  23. Grundhoff A, Sullivan CS, Ganem D (2006) A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12(5):733–750. https://doi.org/10.1261/rna.2326106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li SC, Shiau CK, Lin WC (2008) Vir-Mir db: prediction of viral microRNA candidate hairpins. Nucleic Acids Res 36(Database issue):D184–D189. https://doi.org/10.1093/nar/gkm610

    Article  CAS  PubMed  Google Scholar 

  25. Xue C, Li F, He T, Liu G-P, Li Y, Zhang X (2005) Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinform 6:310. https://doi.org/10.1186/1471-2105-6-310

    Article  CAS  Google Scholar 

  26. Sewer A, Paul N, Landgraf P, Aravin A, Pfeffer S, Brownstein MJ, Tuschl T, van Nimwegen E, Zavolan M (2005) Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinform 6:267. https://doi.org/10.1186/1471-2105-6-267

    Article  CAS  Google Scholar 

  27. Batuwita R, Palade V (2009) microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 25(8):989–995. https://doi.org/10.1093/bioinformatics/btp107

    Article  CAS  PubMed  Google Scholar 

  28. Liu X, He S, Skogerbø G, Gong F, Chen R (2012) Integrated sequence-structure motifs suffice to identify microRNA precursors. PLoS ONE 7(3):e3279728. https://doi.org/10.1371/journal.pone.0032797

    Article  CAS  Google Scholar 

  29. Wu Y, Wei B, Liu H, Li T, Rayner S (2011) MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinform 12:107. https://doi.org/10.1186/1471-2105-12-107

    Article  CAS  Google Scholar 

  30. Boubin M, Shrestha S (2019) Microcontroller implementation of support vector machine for detecting blood glucose levels using breath volatile organic compounds. Sensors (Basel) 19(10):2283. https://doi.org/10.3390/s19102283

    Article  CAS  Google Scholar 

  31. Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, Showe LC, Showe MK (2006) Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinformatics 22(11):1325–1334. https://doi.org/10.1093/bioinformatics/btl094

    Article  CAS  PubMed  Google Scholar 

  32. Gkirtzou K, Tsamardinos I, Tsakalides P, Poirazi P (2010) MatureBayes: a probabilistic algorithm for identifying the mature miRNA within novel precursors. PLoS ONE 5(8):e11843. https://doi.org/10.1371/journal.pone.0011843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vitsios DM, Kentepozidou E, Quintais L, Benito-Gutiérrez E, van Dongen S, Davis MP, Enright AJ (2017) Mirnovo: genome-free prediction of microRNAs from small RNA sequencing data and single-cells using decision forests. Nucleic Acids Res 45(21):e177. https://doi.org/10.1093/nar/gkx836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zou Q, Mao Y, Hu L, Wu Y, Ji Z (2014) miRClassify: an advanced server server for miRNA family classification and annotation. Comput Biol Med 45:157–160. https://doi.org/10.1016/j.compbiomed.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Li W, Jin YX (2005) Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. Acta Biochim Biophys Sin (Shanghai) 37(2):75–87. https://doi.org/10.1093/abbs/37.2.75

    Article  Google Scholar 

  36. Ohler U, Yekta S, Lim LP, Bartel DP, Burge CB (2004) Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. RNA 10(9):1309–1322. https://doi.org/10.1261/rna.5206304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73. https://doi.org/10.1093/nar/gkt1181

    Article  CAS  PubMed  Google Scholar 

  38. Weber MJ (2005) New human and mouse microRNA genes found by homology search. FEBS J 272(1):59–73. https://doi.org/10.1111/j.1432-1033.2004.04389.x

    Article  CAS  PubMed  Google Scholar 

  39. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799. https://doi.org/10.1016/j.molcel.2004.05.027

    Article  CAS  PubMed  Google Scholar 

  40. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M (2005) Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature 434(7031):338–345. https://doi.org/10.1038/nature03441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chirayil R, Kincaid RP, Dahlke C, Kuny CV, Dälken N, Spohn M, Lawson B, Grundhoff A, Sullivan CS (2018) Identification of virus-encoded microRNAs in divergent Papillomaviruses. PLoS Pathog 14(7):e1007156. https://doi.org/10.1371/journal.ppat.1007156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cullen BR (2006) Viruses and microRNAs. Nat Genet 38(Suppl):S25–S30. https://doi.org/10.1038/ng1793

    Article  CAS  PubMed  Google Scholar 

  43. Cai X, Schäfer A, Lu S, Bilello JP, Desrosiers RC, Edwards R, Raab-Traub N, Cullen BR (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2(3):e23. https://doi.org/10.1371/journal.ppat.0020023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D (2005) SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435(7042):682–686. https://doi.org/10.1038/nature03576

    Article  CAS  PubMed  Google Scholar 

  45. Friedländer MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415. https://doi.org/10.1038/nbt1394

    Article  CAS  PubMed  Google Scholar 

  46. Friedländer MR, Mackowiak SD, Chen W, Nikolaus Rajewsky N (2011) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40(1):37–52. https://doi.org/10.1093/nar/gkr688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. An J, Lai J, Lehman ML, Nelson CC (2012) miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data. Nucleic Acids Res 41(2):727–737. https://doi.org/10.1093/nar/gks1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27(18):2614–2615. https://doi.org/10.1093/bioinformatics/btr430

    Article  CAS  PubMed  Google Scholar 

  49. Kuang Z, Wang Y, Li L, Yang X (2018) miRDeep-P2: accurate and fast analysis of the microRNA transcriptome in plants. Bioinformatics 35(14):2521–2522. https://doi.org/10.1093/bioinformatics/bty972

    Article  CAS  Google Scholar 

  50. Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNA. Plant Mol Biol 80(1):75–84. https://doi.org/10.1007/s11103-012-9885-2

    Article  CAS  Google Scholar 

  51. Liu X, He S, Skogerbo G, Xu L, Zhang B (2012) Integrated sequence-structure motifs suffice to identify microRNA precursors. PLoS ONE 7(3):e32797. https://doi.org/10.1371/journal.pone.0032797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leclercq M, Diallo AB, Blanchette M (2013) Computational prediction of the localization of microRNAs within their pre-miRNA. Nucleic Acids Res 41(15):7200–7211. https://doi.org/10.1093/nar/gkt466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Song X, Wang M, Chen Y, Wang H, Han P, Sun H (2013) Prediction of pre-miRNA with multiple stem-loops using pruning algorithm. Comput Biol Med 43(5):409–416. https://doi.org/10.1016/j.compbiomed.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  54. Pfeffer S, Sewer A, Lagos-Quintana M et al (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2(4):269–276. https://doi.org/10.1038/nmeth746

    Article  CAS  PubMed  Google Scholar 

  55. Ding J, Zhou S, Guan J (2010) MiRenSVM: towards better prediction of microRNA precursors using an ensemble SVM classifier with multi-loop features. BMC Bioinform 11(11):S11. https://doi.org/10.1186/1471-2105-11-S11-S11

    Article  Google Scholar 

  56. Xuan P, Guo M, Liu X, Huang Y, Li W, Huang Y (2011) PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Bioinformatics 27(10):1368–1376. https://doi.org/10.1093/bioinformatics/btr153

    Article  CAS  PubMed  Google Scholar 

  57. Kleftogiannis D, Theofilatos K, Likothanassis S, Mavroudi S (2015) YamiPred: a novel evolutionary method for predicting pre-mirnas and selecting relevant features. IEEE/ACM Trans Comput Biol Bioinform 12(5):1183–1192. https://doi.org/10.1109/TCBB.2014.2388227

    Article  CAS  PubMed  Google Scholar 

  58. Peace RJ, Biggar KK, Storey KB, Green JR (2015) A framework for improving microRNA prediction in non-human genomes. Nucleic Acids Res 43(20):e138. https://doi.org/10.1093/nar/gkv698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z (2007) MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 35(Web Server issue):W339–344. https://doi.org/10.1093/nar/gkm368

    Article  PubMed  PubMed Central  Google Scholar 

  60. Krüger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34(Web Server issue):W451–454. https://doi.org/10.1093/nar/gkl243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43(Database issue):D146–D152. https://doi.org/10.1093/nar/gku1104

    Article  CAS  PubMed  Google Scholar 

  62. Witkos TM, Koscianska E, Krzyzosiak WJ (2011) Practical aspects of microRNA target prediction. Curr Mol Med 11(2):93–109. https://doi.org/10.2174/156652411794859250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. https://doi.org/10.1016/j.cell.2004.12.035

    Article  CAS  PubMed  Google Scholar 

  64. Tian Z, Greene AS, Pietrusz JL, Matus IR, Liang M (2008) MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res 18(3):404–411. https://doi.org/10.1101/gr.6587008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26(12):1566–1568. https://doi.org/10.1093/bioinformatics/btq233

    Article  CAS  PubMed  Google Scholar 

  66. Cui X, Wang Q, Yin W, Xu H, Wilson ZA, Wei C, Pan S, Zhang D (2012) PMRD: a curated database for genes and mutants involved in plant male reproduction. BMC Plant Biol 12:215. https://doi.org/10.1186/1471-2229-12-215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sticht C, De La Torre C, Parveen A, Gretz N (2018) miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE 13(10):e0206239. https://doi.org/10.1371/journal.pone.0206239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hsu PW-C, Lin L-Z, Hsu S-D, Hsu JB-K, Huang H-D (2007) ViTa: prediction of host microRNAs targets on viruses. Nucleic Acids Res 35(Database issue):D381–D385. https://doi.org/10.1093/nar/gkl1009

    Article  CAS  PubMed  Google Scholar 

  69. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37(Database issue):D105–D110. https://doi.org/10.1093/nar/gkn851

    Article  CAS  PubMed  Google Scholar 

  70. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, Vlachos IS, Tastsoglou S, Kanellos I, Papadimitriou D, Kavakiotis I, Maniou S, Skoufos G, Vergoulis T, Dalamagas T, Hatzigeorgiou AG (2018) DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res 46(D1):D239–D245. https://doi.org/10.1093/nar/gkx1141

    Article  CAS  PubMed  Google Scholar 

  71. Chou C-H, Shrestha S, Yang C-D, Chang N-W, Lin Y-L, Liao K-W, Huang W-C, Sun T-H, Tu S-J, Lee W-H, Chiew M-Y, Tai C-S, Wei T-Y, Tsai T-R, Huang H-T, Wang C-Y, Wu H-Y, Ho S-Y, Chen P-R, Chuang C-H, Hsieh P-J, Wu Y-S, Chen W-L, Li M-J, Wu Y-C, Huang X-Y, Ng FL, Buddhakosai W, Huang P-C, Lan K-C, Huang C-Y, Weng S-L, Cheng Y-N, Liang C, Hsu W-L, Huang H-D (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46(D1):D296–D302. https://doi.org/10.1093/nar/gkx1067

    Article  CAS  PubMed  Google Scholar 

  72. Georgakilas G, Vlachos IS, Zagganas K, Vergoulis T, Paraskevopoulou MD, Kanellos I, Tsanakas P, Dellis D, Fevgas A, Dalamagas T, Hatzigeorgiou AG (2016) DIANA-miRGen v3.0: accurate characterization of microRNA promoters and their regulators. Nucleic Acids Res 44(D1):D190–D195. https://doi.org/10.1093/nar/gkv1254

    Article  CAS  PubMed  Google Scholar 

  73. Dezulian T, Remmert M, Palatnik JF, Weigel D, Huson DH (2006) Identification of plant microRNA homologs. Bioinformatics 22(3):359–360. https://doi.org/10.1093/bioinformatics/bti802

    Article  CAS  PubMed  Google Scholar 

  74. Burnside J, Bernberg E, Anderson A, Lu C, Meyers BC, Green PJ, Jain N, Isaacs G, Morgan RW (2006) Marek’s disease virus encodes MicroRNAs that map to meq and the latency-associated transcript. J Virol 80(17):8778–8786. https://doi.org/10.1128/JVI.00831-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Parveen A, Mustafa SH, Yadav P, Kumar A (2019) Applications of machine learning in miRNA discovery and target prediction. Curr Genomics 20(8):537–544. https://doi.org/10.2174/1389202921666200106111813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stegmayer G, Di Persia LE, Rubiolo M, Gerard M, Pividori M, Yones C, Bugnon LA, Rodriguez T, Raad J, Milone DH (2019) Predicting novel microRNA: a comprehensive comparison of machine learning approaches. Brief Bioinform 20(5):1607–1620. https://doi.org/10.1093/bib/bby037

    Article  CAS  PubMed  Google Scholar 

  77. Kang W, Friedländer MR (2015) Computational prediction of miRNA genes from small RNA sequencing data. Front Bioeng Biotechnol 3:7. https://doi.org/10.3389/fbioe.2015.00007

    Article  PubMed  PubMed Central  Google Scholar 

  78. Langenberger D, Pundhir S, Ekstrøm CT, Stadler PF, Hoffmann S, Gorodkin J (2012) deepBlockAlign: a tool for aligning RNA-seq profiles of read block patterns. Bioinformatics 28(1):17–24. https://doi.org/10.1093/bioinformatics/btr598

    Article  CAS  PubMed  Google Scholar 

  79. Hackenberg M, Rodríguez-Ezpeleta N, Aransay AM (2011) miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res 39(Web Server issue):W132–138. https://doi.org/10.1093/nar/gkr247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xiao C (2011) High-throughput and reliable protocols for animal microRNA library cloning. Methods Mol Biol 676:123–145. https://doi.org/10.1007/978-1-60761-863-8_10

    Article  CAS  PubMed  Google Scholar 

  81. Hertel J, Langenberger D, Stadler PF (2014) Computational prediction of microRNA genes. Methods Mol Biol 1097:437–456. https://doi.org/10.1007/978-1-62703-709-9_20

    Article  CAS  PubMed  Google Scholar 

  82. Rajendiran A, Chatterjee A, Pan A (2018) Computational approaches and related tools to identify MicroRNAs in a species: a bird’s eye view. Interdiscip Sci 10(3):616–635. https://doi.org/10.1007/s12539-017-0223-x

    Article  CAS  PubMed  Google Scholar 

  83. Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G (2019) Trends in the development of miRNA bioinformatics tools. Brief Bioinform 20(5):1836–1852. https://doi.org/10.1093/bib/bby054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Titov II, Vorozheykin PS (2013) Ab initio human miRNA and pre-miRNA prediction. J Bioinform Comput Biol 11(6):1343009. https://doi.org/10.1142/S0219720013430099

    Article  CAS  PubMed  Google Scholar 

  85. Angeline PJ, Sauders GM, Pollack JB (1994) An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans Neural Networks 67(5):54–65. https://doi.org/10.1109/72.265960

    Article  Google Scholar 

Download references

Acknowledgement

We thank American Journal Experts for their help in revising the English grammar.

Funding

This work was supported by the National Natural Science Foundation of China (31770774); the Provincial Major Project of Basic or Applied Research in Natural Science, Guangdong Provincial Education Department (2016KZDXM038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenhua Huang or Zunnan Huang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Xu, N., Haque, N. et al. Popular Computational Tools Used for miRNA Prediction and Their Future Development Prospects. Interdiscip Sci Comput Life Sci 12, 395–413 (2020). https://doi.org/10.1007/s12539-020-00387-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-020-00387-3

Keywords

Navigation