Skip to main content
Log in

QTL-BSA: A Bulked Segregant Analysis and Visualization Pipeline for QTL-seq

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

In recent years, the application of Whole Genome Sequencing (WGS) on plants has generated sufficient data for the identification of trait-associated genomic loci or genes. A high-throughput genome-assisted QTL-seq strategy, combined with bulked-segregant analysis and WGS of two bulked populations from a segregating progeny with opposite phenotypic trait values, has gained increasing popularities in research community. However, there is no publicly available user friendly software for the identification and visualization. Hence, we developed a tool named QTL-BSA (QTL-bulked segregant analysis and visualization pipeline), which could facilitate the rapid identification and visualization of candidate QTLs from QTL-seq. As a proof-of-concept study, we have applied the tool for the rapid discovery and the identification of genes related with the partial blast resistance in rice. Genomic region of the major QTL identified on chromosome 6, is located between 1.52 and 4.32 Mb, which is consistent with previous studies (2.39–4.39 Mb). We also derived the gene and QTLs functional annotation of this region. QTL-BSA offers a comprehensive solution to facilitate a wide range of programming and visualization tasks in QTL-seq analysis, is expected to be used widely by the research community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Declarations

Data and Materials

The datasets are available in the NCBI Sequence Read Archive (SRA): DRX002569 R-bulk; DRX002570 S-bulk.

References

  1. Eizenga GC, Prasad B, Jackson AK, Jia MH (2013) Identification of rice sheath blight and blast quantitative trait loci in two different O. sativa/O. nivara Advanced backcross populations. Mol Breed. 31(4):889–907

    Article  Google Scholar 

  2. Liang YS, Gao ZQ, Shen XH, Zhan XD, Zhang YX, Wu WM, Cao LY, Cheng SH (2011) Mapping and comparative analysis of QTL for rice plant height based on different sample sizes within a single line in RIL population. Rice Sci. 18(4):265–272

    Article  Google Scholar 

  3. Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309(5735):741–745

    Article  CAS  PubMed  Google Scholar 

  4. Ashikari M, Matsuoka M (2006) Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci. 11:344–350

    Article  CAS  PubMed  Google Scholar 

  5. Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312(5578):1392–1396

    Article  CAS  PubMed  Google Scholar 

  6. Lin HX (1995) RFLP mapping of QTLs for grain shape traits in indica rice (Oryza sativa L. subsp. indica). Sci Agric. 28:1–7

    Google Scholar 

  7. Lin HX, Qian HR, Zhang JY, Zheng KL (1996) RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor Appl Genet. 92:920–927

    Article  CAS  PubMed  Google Scholar 

  8. Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet. 107:479–493

    Article  CAS  PubMed  Google Scholar 

  9. Yoon DB, Kang KH, Kim HJ, Ju HG, Kwon SJ, Suh JP, Jeong OY, Ahn SN (2006) Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa Japonica cultivar Hwaseongbyeo. Theor Appl Genet. 112:1052–1062

    Article  CAS  PubMed  Google Scholar 

  10. Hori K, Sato K, Nankaku N, Takeda K (2005) QTL analysis in recombinant chromosome substitution lines and doubled haploid lines derived from across between Hordeum vulgare ssp. vulgare and Hordeum vulgare ssp. spontaneum. Mol Breed. 16:295–311

    Article  CAS  Google Scholar 

  11. Sato K, Matsumoto T, Ooe N, Takeda K (2009) Genetic analysis of seed dormancy QTL in barley. Breed Sci. 59:645–650

    Article  CAS  Google Scholar 

  12. Grewal TS, Rossnagel BG, Pozniak CJ, Scoles GJ (2007) Mapping quantitative trait loci associated with barley net blotch resistance. Theor Appl Genet. 116:529–539

    Article  PubMed  CAS  Google Scholar 

  13. Cho S, Kumar J, Shultz JF, Anupama K, Tefera F, Muehlbauer FJ (2002) Mapping genes for double podding and other morphological traits in chickpea. Euphytica. 125:285–292

    Article  Google Scholar 

  14. Rakshit S, Winter P, Tekeoglu M, Munoz JJ, Pfaff T, Benko-Iseppon AM, Muehlbauer FJ, Kahl G (2003) DAF marker tightly linked to a major locus for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica. 132:23–30

    Article  CAS  Google Scholar 

  15. Cobos MJ, Winter P, Kharrat M, Cubero JI, Gil J, Millan T, Rubio J (2009) Genetic analysis of agro-nomic traits in a wide cross of chickpea. Field Crop Res. 111:130–136

    Article  Google Scholar 

  16. Vadez V, Krishnamurthy L, Thudi M, Anuradha C, Colmer TD, Turner NC, Siddique KHM, Gaur PM, Varshney RK (2012) Assessment of ICCV 2 × JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTLs for seed yield and yield components. Mol Breed. 30:9–21

    Article  Google Scholar 

  17. Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early-season cold tolerance in Sorghum. Theor Appl Genet. 116(4):577–587

    Article  PubMed  Google Scholar 

  18. Shehzad T, Okuno K (2015) QTL mapping for yield and yield-contributing traits in Sorghum (Sorghum bicolor (L.) Moench) with genome-based SSR markers. Euphytica. 203(1):17–31

    Article  CAS  Google Scholar 

  19. Wassom J, Wong JC, Martinez E, King JJ, DeBaene J, Hotchkiss JR, Mikkilineni V, Bohn MO, Rocheford TR (2008) QTL associated with maize kernel oil, protein, and starch concentrations; kernel mass; and grain yield in Illinois high oil × B73 backcross-derived lines. Crop Sci. 48(1):243–252

    Article  Google Scholar 

  20. Nikolic A, Andjelkovic V, Dodig D, Mladenovicdrinic S, Kravic N, Ignjatovic-Micic D (2013) Identification of QTLs for drought tolerance in maize: II: yield and yield components. Genetika. 45(2):341–350

    Article  Google Scholar 

  21. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics. 172:1165–1177

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ni J, Pujar A, Youens-Clark K, Yap I, Jaiswal P, Tecle I, McCouch S (2009) Gramene QTL database: development, content and applications. Database. https://doi.org/10.1093/database/bap005

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yonemaru JI, Yamamoto T, Fukuoka S, Uga Y, Hori K, Yano M (2010) Q-TARO: QTL annotation rice online database. Rice. 3(2):194–203

    Article  Google Scholar 

  24. Kim CK, Yoon UH, Lee GS, Lee HK, Kim YH, Hahn JH (2009) Rice genetic marker database: an identification of single nucleotide polymorphism (SNP) and quantitative trait loci (QTL) markers. Afr J Biotech. 8(13):2963–2967

    CAS  Google Scholar 

  25. Fukuoka S, Ebana K, Yamamoto T, Yano M (2010) Integration of genomics into rice breeding. Rice. 3:131–137

    Article  Google Scholar 

  26. Takaji H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 74:174–183

    Article  CAS  Google Scholar 

  27. Lu HF, Lin T, Klein J, Wang SH, Qi JJ, Zhou Q, Sun JJ, Zhang ZH, Weng YQ, Huang SW (2014) QTL-seq identifies early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet. 127:1491–1499

    Article  PubMed  Google Scholar 

  28. Xu FF, Sun X, Chen YL, Huang Y, Tong C, Bao JS (2015) Rapid identification of major QTLs associated with rice grain weight and their utilization. PLoS One. 10(3):e0122206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Laxmi Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hisano H, Sakamoto K, Takagi H, Terauchi R, Sato K (2017) Exome QTL-seq maps monogenic locus and QTLs in barley. BMC Genomics. 18:125

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 genome project data processing subgroup (2009) The sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 25:2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kosugi S, Natsume S, Yoshida K, MacLean D, Cano L, Kamoun S, Terauchi R (2013) Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data. PLoS One. 8(10):1–11

    Article  CAS  Google Scholar 

  34. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10(3):R251–R310

    Article  CAS  Google Scholar 

  35. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Angel GD, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA (2013) From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinform. 11(1110):11.10.1–11.10.33

    Google Scholar 

  37. DePristo MA, Banks E, Poplin RE, Garimella KV, Maguire JR, Philippakis AA, Angel G, Rivas MA, Hanna M, McKenna A et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. NatGenet. 43(5):491–498

    CAS  Google Scholar 

  38. Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shaw PD, Marshall D (2013) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform. 14(2):193–202

    Article  CAS  PubMed  Google Scholar 

  39. James TR, Helga T, Wendy W, Mitchell G, Eric SL, Gad G, Jill PM (2011) Integrative genomics viewer. Nat Biotechnol. 29:24–26

    Article  CAS  Google Scholar 

  40. Helga T, James TR, Jill PM (2013) Integrative genomics viewer (Igv): high-performance genomics data visualization and exploration. Briefings Bioinform. 14:178–192

    Article  CAS  Google Scholar 

  41. Ryu HS, Han M, Lee SK, Cho JI, Ryoo N, Heu S, Lee YH, Bhoo SH, Wang GL, Hahn TR, Jeon JS (2006) A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep. 25(8):836–847

    Article  CAS  PubMed  Google Scholar 

  42. Berri S, Abbruscato P, Faivre-Rampant O, Brasileiro AC, Fumasoni I, Satoh K, Kikuchi S, Mizzi L, Morandini P, Pe ME et al (2009) Characterization of WRKY co-regulatory networks in rice and Arabidopsis. BMC Plant Biol. 9:120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Duan Y, Jiang Y, Ye S, Karim A, Ling Z, He Y, Yang S, Luo K (2015) PtrWRKY73, asalicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. Plant Cell Rep. 34(5):831–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol. 30:174–178

    Article  CAS  PubMed  Google Scholar 

  45. Luo X, Ji SD, Yuan PR, Lee HS, Kim DM, Balkunde S, Kang JW, Ahn SN (2013) QTL mapping reveals a tight linkage between QTLs for grain weight and panicle spikelet number in rice. Rice 6:33

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    Article  CAS  PubMed  Google Scholar 

  47. Damerval C, Maurice A, Josse JM, de Vienne D (1994) Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137:289–301

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Meena RK, Shome S, Thakur S (2017) Prediction of phenotypic effects of variants observed in LOC_Oso4g36720 of FRO1 gene in rice (Oryza sativa L.). Interdiscip Sci: Comput Life Sci. 9(2):304–308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of Dr. Gulei Jin (Guhe Information Inco. Ltd.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanling Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Qiu, J. & Gao, Q. QTL-BSA: A Bulked Segregant Analysis and Visualization Pipeline for QTL-seq. Interdiscip Sci Comput Life Sci 11, 730–737 (2019). https://doi.org/10.1007/s12539-019-00344-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-019-00344-9

Keywords

Navigation