Skip to main content

Advertisement

Log in

Evaluating Urban Heat Islands Using the Urban Viability Index (Case Study: Karaj Metropolis)

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

As one of the most significant aspects of rapid growth without urban planning, reduction in vegetation is often replaced by unauthorized surfaces such as buildings and other impervious surfaces. Karaj metropolis is one of the significant urban areas located 20 km west of Tehran with such rapid growth. The present study evaluates the temporal-spatial variations of Land Surface Temperature (LST) and the Urban Liveability Index (ULI). It also seeks to examine the Urban Heat Islands (UHIs) using the data of the Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) over 32 years (1987–2019). The Fractal Net Evolution Approach (FNEA) was employed to calculate UHIs, and the deductive Environmental Critical Condition (ECI) method based on LST and NDVI was used for probing the urban environmental situation. The results indicated that the average LST in Karaj metropolis is between 22 and 35 °C. Furthermore, in 1990, the standard deviation of the LST was increased so that more than seven °C was observed for LST. Analysis of temperature zones and their effective parameters such as construction, transportation, and road construction in Karaj metropolis shows a significant negative correlation between LST and NDVI and a positive one between LST and constructed urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Land Surface Temperature (LST).

References

  • Ahmadi, M., & DadashiRudbari, A. (2017). Identifying HUIs via environmental approach (case study: Isfahan metropolis). Geography and Environmental Planning, 28(3), 1–20.

    Google Scholar 

  • Ahmadi, M., DadashiRoudbari, A., & Esfandiari, N. (2019). Monitoring UHIs with the FNEA (case study: Tehran metropolis). Iranian Journal of Remote Sensing & GIS, 11(1), 95–114.

    Google Scholar 

  • Barsi, A., Kanton, L., Geir, K., Brian, L., Makham, J., & Pedelty, A. (2014). The spectral response of the Landsat-8 operational land imager. Remote sensing, 6(10), 10232–10251. https://doi.org/10.3390/rs61010232.

    Article  Google Scholar 

  • Binh, M., Sastre, X., Guillou, L., Pinieue, G., Terrier, P., & Lagace., R., Aurais, A., Hostein, l., Coindre, J., (2005). MDM2 and CDK4 immunstainigs are useful adjuncts in diagnosing well-differentiated and differentiated liposarcoma subtypes a comparative analysis of 559 soft tissue neoplasms with genetic data. The American Journal of Surgical Pathology, 29(10), 1340. https://doi.org/10.1097/01.pas.0000170343.09562.39.

    Article  Google Scholar 

  • Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62, 241–252. https://doi.org/10.1016/S0034-4257(97)00104-1

    Article  Google Scholar 

  • Coseo, P., & Larsen, L. (2014). How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landscape and Urban Planning, 125, 117–129. https://doi.org/10.1016/j.landurbplan.2014.02.019

    Article  Google Scholar 

  • Debbage, N., & Shepherd, J. M. (2015). The urban heat island effect and city contiguity. Computers, Environment and Urban Systems, 54, 181–194. https://doi.org/10.1016/j.compenvurbsys.2015.08.002

    Article  Google Scholar 

  • Finn, M. P., Reed, M.D., & Yamamoto, K. H. A. (2012). Straight forward guide for processing radiance and reflectance foreo-1 ALI, Landsat 5tm, Landsat 7ETM+, and Aster; Unpublished Report; USGS/Centero fexcellence for Geospatial Information Science: Washington, DC, USA.

  • Higgs, C., Badland, H., Simons, K., et al. (2019). The Urban Liveability Index: Developing a policy-relevant urban liveability composite measure and evaluating associations with transport mode choice. International Journal of Health Geographics, 18(14), 1096. https://doi.org/10.1186/s12942-019-0178-8

    Article  Google Scholar 

  • Jiménez-Muñoz, J. C., & Sobrino, J. A. (2003). A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research: Atmospheres.. https://doi.org/10.1029/2003JD003480.

    Article  Google Scholar 

  • Kikon, N., Singh, P., Singh, S. K., & Vyas, A. (2016). Assessment of urban heat islands (UHIs) of Noida City, India using multi-temporal satellite data. Sustainable Cities and Society, 22, 19–28. https://doi.org/10.1016/j.scs.2016.01.005

    Article  Google Scholar 

  • Kruse, P. W., McGlauchlin, L. D., & McQuistan, R. B. (1962). Elements of infrared technology: Generation, transmission and detection. Wiley. https://doi.org/10.1126/science.137.3524.123

    Book  Google Scholar 

  • Lo, C. P., Quattrochi, D. A., & Luvall, J. C. (1997). Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. International Journal of Remote Sensing, 18(2), 287–304. https://doi.org/10.1080/014311697219079

    Article  Google Scholar 

  • Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522–538. https://doi.org/10.1016/j.jenvman.2017.03.095

    Article  Google Scholar 

  • Molnár, G. (2016). Analysis of land surface temperature and NDVI distribution for Budapest using Landsat 7 ETM+ data. Acta Climatologica Et Chorological, 49, 49–61.

    Google Scholar 

  • Morawitz, F., Blewett, M., Alex, C., & Marina, A. (2006). Using NDVI to assess vegetative land cover change in central puget sound. Environmental Monitoring and Assessment, 114(68), 85. https://doi.org/10.1007/s10661-006-1679-z.

    Article  Google Scholar 

  • Nildari, D., Prolay, M., Subhasish, S., & Ranajit, G. (2021). Assesment of variation of land use/land cover and its impact on land surface temperature of Asansol sibdivision. The Egyptian Journal of Remote Sensing and Spsce Sience, 24(1), 131–149. https://doi.org/10.1016/j.ejrs.2020.05.001

    Article  Google Scholar 

  • Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1–24. https://doi.org/10.1002/qj.49710845502

    Article  Google Scholar 

  • Pan, J. (2016). Area delineation and spatial-temporal dynamics of urban heat island in Lanzhou City, China using remote sensing imagery. Journal of the Indian Society of Remote Sensing, 44(1), 111–127. https://doi.org/10.1007/s12524-015-0477-x

    Article  Google Scholar 

  • Ranjbar, S. A., Ali, A. B. A., & Sadeghi, H. A. (2006). The effects of heat island and urbanization on the weather and local climate in the metropolis of Tehran based on data from Mehrabad and Varamin. Journal of Environmental Studies, 39, 59–68.

    Google Scholar 

  • Rasul, A., Balzter, H., Smith, C., Remedios, J., Adamu, B., Sobrino, J., & Weng, Q. (2017). A review on remote sensing of urban heat and cool islands. Land, 6(2), 38. https://doi.org/10.3390/land6020038

    Article  Google Scholar 

  • Sadeghinia, A. (2012). Spatio-temporal analysis of the structure of the UHIs in Tehran using RS and GIS, Msc.Thesis, Faculty of Geographical Sciences, Kharazmi University of Tehran.

  • Santamouris, M. (2013). Energy and climate in the urban built environment. Routledge. https://doi.org/10.4324/9781315073774

    Article  Google Scholar 

  • Senanayake, I. P., Welivitiya, W. D. D. P., & Nadeeka, P. M. (2013). Remote sensing based analysis of urban heat islands with vegetation cover in Colombo city, Sri Lanka using Landsat-7 ETM+ data. Urban Climate, 5, 19–35. https://doi.org/10.1016/j.uclim.2013.07.004

    Article  Google Scholar 

  • Shakiba, A., Firouzabadi, P., Ashourlou, D., & Namdari, S. (2009). Analysis of relationship between land use/cover and urban heat island, using ETM+. Iranian Journal of Remote Sensing & GIS, 1(1), 39–56.

    Google Scholar 

  • Singh, R. B., & Grover, A. (2015). Spatial correlations of changing land use, surface temperature (UHI) and NDVI in Delhi using Landsat satellite images. In Urban development challenges, risks and resilience in Asian Mega Cities. Springer, Tokyo (pp. 83–97). https://doi.org/10.1007/978-4-431-55043-3_5.

  • Sobrino, J., Caselles, V., & Becker, F. (1990). Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard. ISPRS Journal of Photogrammetry and Remote Sensing, 44, 343–354. https://doi.org/10.1016/0924-2716(90)90077-O

    Article  Google Scholar 

  • Sobrino, J., & Raissouni, N. (2000). Toward remote sensing methods for land cover dynamic monitoring: Application to morocco. International Journal of Remote Sensing, 21, 353–366. https://doi.org/10.1080/014311600210876

    Article  Google Scholar 

  • Son, N. T., Chen, C. F., Chen, C. R., Thanh, B. X., & Vuong, T. H. (2017). Assessment of urbanization and urban heat islands in Ho Chi Minh City, Vietnam using Landsat data. Sustainable Cities and Society, 30, 150–161. https://doi.org/10.1016/j.scs.2017.01.009

    Article  Google Scholar 

  • Srivanit, M., & Hokao, K. (2012). Thermal infrared remote sensing for urban climate and environmental studies: An application for the city of Bangkok, Thailand. Journal of Architectural/planning Research and Studies, 9(1), 83–100.

    Google Scholar 

  • Srivastava, P. K., Han, D., Rico-Ramirez, M. A., Bray, M., Islam, T., Gupta, M., & Dai, Q. (2014). Estimation of land surface temperature from atmospherically corrected landsat TM image using 6S and NCEP global reanalysis product. Environmental Earth Sciences, 72, 5183–5196. https://doi.org/10.1007/s12665-014-3388-1

    Article  Google Scholar 

  • Tang, B. H., Wu, H., Li, C., & Li, Z. L. (2011). Estimation of broad band surface emissivity from narrow band emissivities. Optics Express, 19, 185–192. https://doi.org/10.1364/OE.19.000185

    Article  Google Scholar 

  • USGS. (2014). Using the USGS Landsat 8 Product. http://landsat.usgs.gov/Landsat8_Using_Product.php. Accessed 9 November 2014.

  • Vandegriend, A., Owe, M., Vugts, H., & Ramothwa, G. (1992). Botswana water and surface energy balance research program. Part 1: Integrated Approach and Field Campaign Results; NASA Goddard Space Flight Center: Greenbelt, MD, USA.

  • Wang, F., Qin, Z., Song, C., Tu, L., Karnieli, A., & Zhao, S. (2015). An improved mono-window algorithm for land surface temperature retrieval from landsat 8 thermal infrared sensor data. Remote Sensing, 7, 4268–4289. https://doi.org/10.3390/rs70404268

    Article  Google Scholar 

  • Wang, S. L. L. (2012). Chapter 8—Land-surface temperature and thermal infrared emissivity. Advanced remote sensing (pp. 235–271). Academic Press.

    Google Scholar 

  • Wark, D. Q., Yamamoto, G., & Lienesch, J. H. (1962). Methods of estimating infrared flux and surface temperature from meteorological satellites. Journal of the Atmospheric Sciences, 19(5), 369–384. https://doi.org/10.1175/1520-0469(1962)019%3c0369:MOEIFA%3e2.0.CO;2

    Article  Google Scholar 

  • Yang, J., Wang, Z. H., & Kaloush, K. E. (2015). Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’for mitigating urban heat island? Renewable and Sustainable Energy Reviews, 47, 830–843. https://doi.org/10.1016/j.rser.2015.03.092

    Article  Google Scholar 

  • Yu, X., Guo, X., & Wu, Z. (2014). Land surface temperature retrieval from landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing, 6, 9829–9852. https://doi.org/10.3390/rs6109829

    Article  Google Scholar 

  • Zhang, J., Wang, Y., & Li, Y. A. (2006). C++ program for retrieving land surface temperature from the data of landsat TM/ETM+ band6. Computers & Geosciences, 32, 1796–1805. https://doi.org/10.1016/j.cageo.2006.05.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abouzar Nasiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, A., Zandi, R. & Khosravian, M. Evaluating Urban Heat Islands Using the Urban Viability Index (Case Study: Karaj Metropolis). J Indian Soc Remote Sens 50, 833–847 (2022). https://doi.org/10.1007/s12524-021-01489-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01489-1

Keywords

Navigation