Skip to main content

Advertisement

Log in

Area Delineation and Spatial-Temporal Dynamics of Urban Heat Island in Lanzhou City, China Using Remote Sensing Imagery

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

One of the key impacts of rapid urbanization on the environment is the effect of urban heat island (UHI). By using the Landsat TM/ETM+ thermal infrared remote sensing data of 1993, 2001 and 2011 to retrieve the land surface temperature (LST) of Lanzhou City, and by adopting object-oriented fractal net evolution approach (FNEA) to make image segmentation of the LST, the UHI elements were extracted. The G* index spatial aggregation analysis was made to calculate the urban heat island ratio index (URI), and the landscape metrics were used to quantify the changes of the spatial pattern of the UHI from the aspects of quantity, shape and structure. The impervious surface distribution and vegetation coverage were extracted by a constrained linear spectral mixture model to explore the relationships of the impervious surface distribution and vegetation coverage with the UHI. The information of urban built-up area was extracted by using UBI (NDBI-NDVI) index, and the effects of urban expansion on city thermal environment were quantitatively analyzed, with the URI and the LST grade maps built. In recent 20 years, the UHI effect in Lanzhou City was strengthened, with the URI increased by 1.4 times. The urban expansion had a spatiotemporal consistency with the UHI expansion. The patch number and density of the UHI landscape were increased, the patch shape and the whole landscape tended to be complex, the landscape became more fragmented, and the landscape connectivity was decreased. The heat island strength had a negative linear correlation with the urban vegetation coverage, and a positive logarithmic correlation with the urban impervious surface coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • An, X. Q., Ma, A. Q., & Liu, D. B. (2008). A GIS-based study for optimizing the total emission control strategy in Lanzhou city. Environmental Modeling and Assessment, 13, 491–501.

    Article  Google Scholar 

  • Artis, D. A., & Carnahan, W. H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12, 313–329.

    Article  Google Scholar 

  • Berk, A., Bernstein, L. S., & Robertson, D. C. (1989). MODTRAN: a moderate resolution model for LOWTRAN 7, technical report GL-TR-89–0122. Lab, Bedford, MA: Geophysics.

    Google Scholar 

  • Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research, 97, 15787–15801.

    Article  Google Scholar 

  • Cheng, K. S., Hung, W. C., & Chen, Y. C. (2010). Comparing landcover patterns in Tokyo, Kyoto, and Taipei using ALOS multispectral images. ISPRS Journal of Photogrammetry, 38, 513–516.

    Google Scholar 

  • Dash, P., Gottsche, F. M., Olesen, F. S., & Fischer, H. (2002). Land surface temperature and emissivity estimation from passive sensor data: theory and practice–current trends. International Journal of Remote Sensing, 23, 2563–2594.

    Article  Google Scholar 

  • Deng, C. B., & Wu, C. S. (2013). Examining the impacts of urban biophysical compositions on surface urban heat island: a spectral unmixing and thermal mixing approach. Remote Sensing of Environment, 131, 262–274.

    Article  Google Scholar 

  • Deng, J. S., Wang, K., Hong, Y., & Qi, J. G. (2009). Spatio–temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and Urban Plan, 92, 187–198.

    Article  Google Scholar 

  • Devanathan, P., & Devanathan, K. (2011). Heat island effects. In G. M. Sabnis (Ed.), Green building with concrete: sustainable design and construction (pp. 175–226). Boca Raton, FL: CRC Press.

    Chapter  Google Scholar 

  • Geoffrey, J. H., Thomas, B., Danielle, J. M., & Andre’, B. (2003). A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS Journal of Photogrammetry, 57, 327–345.

    Article  Google Scholar 

  • Getis, A., & Ord, J. K. (1992). The analysis of spatia1 association by the use of distance statistics. Geographical Analysis, 24, 189–206.

    Article  Google Scholar 

  • Harlan, S. L., Declet-Barreto, J. H., Stefanov, W. L., & Petitti, D. B. (2013). Neighborhood effects on heat deaths: social and environmental predictors of vulnerability in Maricopa county, Arizona. Environmental Health Perspectives, 121, 197.

    Article  Google Scholar 

  • Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 395–309.

    Article  Google Scholar 

  • Irish, R. R. (2000). Landsat 7 science data user’s handbook (pp. 430–15). Report: National Aeronautics and Space Administration.

    Google Scholar 

  • Jia, Y. W., Wang, H., & Ni, G. H. (2005). Principle and practice distributed hydrological model of watersheds. Beijing: China Water Public Press (In Chinese).

    Google Scholar 

  • Jimenez-Munoz, J. C., & Sobrino, J. A. (2003). A generalized single channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research, 108(D22), 4688. doi:10.1029/ 2003JD003480.

    Article  Google Scholar 

  • Li, H. F., & Yin, J. Y. (2013). A study on urban thermal field of Shanghai using multi-source remote sensing data. Journal of the Indian Society of Remote Sensing, 41, 1009–1019.

    Article  Google Scholar 

  • McGarigal, K., Cushmanm, S., Neel, M., & Ene, E. (2002). FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst, Available at the following web site. www.umass.edu/landeco/research/fragstats/fragstats.html

  • Nichol, J., & Hang, T. P. (2012). Temporal characteristics of thermal satellite images for urban heat stress and heat island mapping. ISPRS Journal of Photogrammetry & Remote Sensing, 74, 153–162.

    Article  Google Scholar 

  • Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108, 1–24.

    Google Scholar 

  • Okwen, R. T., Pu, R., & Cunningham, J. A. (2011). Remote sensing of temperature variations around major power plants as point sources of heat. International Journal of Remote Sensing, 32, 3791–3805.

    Article  Google Scholar 

  • Owen, T. W., Carlson, T. N., & Gillies, R. R. (1998). An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. International Journal of Remote Sensing, 19, 1663–1681.

    Article  Google Scholar 

  • Qin, Z., Karnieli, A., & Berliner, P. (2001). A mono-window algorithm for retrieving land surface temperature from landsat TM data and its application to the Israel–Egypt border region. International Journal of Remote Sensing, 22, 3719–3746.

    Article  Google Scholar 

  • Quan, J. L., Chen, Y. H., Zhan, W. F., Wang, J. F., Voogt, J., & Wang, M. J. (2014). Multi-temporal trajectory of the urban heat island centroid in beijing, china based on a gaussian volume model. Remote Sensing of Environment, 149, 33–46.

    Article  Google Scholar 

  • Rao, P. K. (1972). Remote sensing of urban heat islands from an environmental satellite. Bulletin of the American Meteorological Society, 53, 647–648.

    Google Scholar 

  • Rizwan, A. M., Dennis, L. Y. C., & Liu, C. (2008). A review on the generation, determination and mitigation of urban heat island. Journal of Environmental Sciences, 20, 120–128.

    Article  Google Scholar 

  • Roberta, A., Stefania, B., & Manuele, P. (2014). Spatial and temporal trends of the surface and air heat island over Milan using MODIS data. Remote Sensing of Environment, 150, 163–171.

    Article  Google Scholar 

  • Şahin, M., Yildiz, B. Y., Şenkal, O., & Peştemalci, V. (2012). Modelling and remote sensing of land surface temperature in Turkey. Journal of the Indian Society and Remote, 40, 399–409.

    Article  Google Scholar 

  • Shepherd, J. M. (2006). Evidence of urban-induced precipitation variability in arid climate regimes. Journal of Arid Environments, 67, 607–628.

    Article  Google Scholar 

  • Sobrino, J. A., Jimenez-Munoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from Landsat TM 5. Remote Sensing of Environment, 90, 434–440.

    Article  Google Scholar 

  • Sobrino, J. A., Kharraz, J. E., & Li, Z. L. (2003). Surface temperature and water vapor retrieval from MODIS data. International Journal of Remote Sensing, 24, 5161–5182.

    Article  Google Scholar 

  • Sobrino, J. A., Raissouni, N., & Li, Z. L. (2001). A comparative study of land surface emissivity retrieval from NOAA data. Remote Sensing of Environment, 75, 256–266.

    Article  Google Scholar 

  • Srivastava, P. K., Majumdar, T. J., & Bhattacharya, A. K. (2010). Study of land surface temperature and spectral emissivity using multi-sensor satellite data. Journal of Earth System Science, 119, 67–74.

    Article  Google Scholar 

  • Tou, J., & Gonzalez, R. (1974). Pattern recognition principles. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370–384.

    Article  Google Scholar 

  • Wan, Z., & Dozier, J. A. (1996). Generalized split-window algorithm for retrieving land surface temperature from space. IEEE Transactions on Geoscience and Remote, 34, 892–905.

    Article  Google Scholar 

  • Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 335–344.

    Article  Google Scholar 

  • Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89, 467–483.

    Article  Google Scholar 

  • Wu, C. (2004). Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery. Remote Sensing of Environment, 93, 480–492.

    Article  Google Scholar 

  • Wu, C., & Murray, A. T. (2003). Estimating impervious surface distribution by spectral mixture analysis. Remote Sensing of Environment, 84, 493–505.

    Article  Google Scholar 

  • Wu, H., Ye, L. P., Shi, W. Z., & Clarke, K. C. (2014). Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. International Journal of Applied Earth Observations, 32, 67–78.

    Article  Google Scholar 

  • Xu, H. Q., Ding, F., & Wen, X. L. (2009). Urban expansion and heat island dynamics in the Quanzhou region, China. IEEE J-STARS, 2, 74–79.

    Google Scholar 

  • Xu, Y., Qin, Z., & Wan, H. (2010). Spatial and temporal dynamics of urban heat island and their relationship with land cover changes in urbanization process: a case study in Suzhou, China. Journal of the Indian Society and Remote, 38, 654–663.

    Article  Google Scholar 

  • Yang, J. M., & Qiu, J. H. (1996). The empirical expressions of the relation between precipitable water and ground water vapor pressure for some areas in China. Chinese Journal of Atmospheric Science, 20, 620–626 (In Chinese).

    Google Scholar 

  • Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106, 375–386.

    Article  Google Scholar 

  • Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24, 583–594.

    Article  Google Scholar 

  • Zheng, W. W., & Zeng, Y. N. (2013). Retrieval of urban land surface component temperature using multi-source remote-sensing data. Journal of Central South University, 20, 2489–2497.

    Article  Google Scholar 

Download references

Acknowledgments

Funding

This study was funded by the National Nature Science Foundation of China (No. 41361040) and the Fundamental Research Funds for the Provincial Universities of Gansu (No. 2014–63). Also, I thank Yao Li, Wangming Yang and Wenchao Han for their assistance during the field investigations and image processing.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghu Pan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J. Area Delineation and Spatial-Temporal Dynamics of Urban Heat Island in Lanzhou City, China Using Remote Sensing Imagery. J Indian Soc Remote Sens 44, 111–127 (2016). https://doi.org/10.1007/s12524-015-0477-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-015-0477-x

Keywords

Navigation