Skip to main content
Log in

Update of Wnt signaling in implantation and decidualization

  • Review Article
  • Published:
Reproductive Medicine and Biology

Abstract

Embryonic development into an implantation-competent blastocyst, synchronized uterine transformation into a receptive stage, and an intimate cross-talk between the activated blastocyst and the receptive uterus are essential for successful implantation, and therefore for subsequent pregnancy outcome. Evidence accumulating during recent years has underlined the importance of the Wnt signaling pathway in mammalian implantation and decidualization. Herein, this review focuses on the current state of knowledge regarding Wnt signaling in multiple implantation and decidualization events: pre-implantation embryo development, blastocyst activation for implantation, uterine development, and decidualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31:99–109.

    Article  CAS  PubMed  Google Scholar 

  2. Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell. 1987;50:649–57.

    Article  CAS  PubMed  Google Scholar 

  3. Nusse R, Brown A, Papkoff J, Scambler P, Shackleford G, McMahon A, et al. A new nomenclature for int-1 and related genes: the Wnt gene family. Cell. 1991;64:231.

    Article  CAS  PubMed  Google Scholar 

  4. Riggleman B, Schedl P, Wieschaus E. Spatial expression of the Drosophila segment polarity gene armadillo is posttranscriptionally regulated by wingless. Cell. 1990;63:549–60.

    Article  CAS  PubMed  Google Scholar 

  5. Klingensmith J, Nusse R, Perrimon N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev. 1994;8:118–30.

    Article  CAS  PubMed  Google Scholar 

  6. Peifer M, Pai LM, Casey M. Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for wingless signal and zeste-white 3 kinase. Dev Biol. 1994;166:543–56.

    Article  CAS  PubMed  Google Scholar 

  7. McMahon AP, Moon RT. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell. 1989;58:1075–84.

    Article  CAS  PubMed  Google Scholar 

  8. Clevers H. Wnt/β-catenin signaling in development and disease. Cell. 2006;127:469–80.

    Article  CAS  PubMed  Google Scholar 

  9. Chien AJ, Conrad WH, Moon RT. A Wnt survival guide: from flies to human disease. J Invest Dermatol. 2009;129:1614–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development. 2009;136:3205–14.

    Article  PubMed  Google Scholar 

  11. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–205.

    Article  CAS  PubMed  Google Scholar 

  12. Maruotti N, Corrado A, Neve A, Cantatore FP. Systemic effects of Wnt signaling. J Cell Physiol. 2013;228:1428–32.

    Article  CAS  PubMed  Google Scholar 

  13. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998;14:59–88.

    Article  CAS  PubMed  Google Scholar 

  14. Teo JL, Kahn M. The Wnt signaling pathway in cellular proliferation and differentiation: a tale of two coactivators. Adv Drug Deliv Rev. 2010;62:1149–55.

    Article  CAS  PubMed  Google Scholar 

  15. Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006;281:22429–33.

    Article  CAS  PubMed  Google Scholar 

  16. Kikuchi A, Yamamoto H, Sato A, Matsumoto S. New insights into the mechanism of Wnt signaling pathway activation. Int Rev Cell Mol Biol. 2011;291:21–71.

    Article  CAS  PubMed  Google Scholar 

  17. Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod. 2011;26:2830–40.

    Article  CAS  PubMed  Google Scholar 

  18. Saito-Diaz K, Chen TW, Wang X, Thorne CA, Wallace HA, Page-McCaw A, et al. The way Wnt works: components and mechanism. Growth Factors. 2013;31:1–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Astudillo P, Larraín J. Wnt signaling and cell-matrix adhesion. Curr Mol Med. 2014;14:209–20.

    Article  CAS  PubMed  Google Scholar 

  20. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. β-Catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997;16:3797–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 1998;17:1371–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108:837–47.

    Article  CAS  PubMed  Google Scholar 

  23. Hurlstone A, Clevers H. T cell factors: turn-ons and turn-offs. EMBO J. 2002;21:2303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science. 2007;316:1619–22.

    Article  CAS  PubMed  Google Scholar 

  25. Daniels DL, Weis WI. β-Catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol. 2005;12:364–71.

    Article  CAS  PubMed  Google Scholar 

  26. Sonderegger S, Pollheimer J, Knöfler M. Wnt signalling in implantation, decidualisation and placental differentiation—review. Placenta. 2010;31:839–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rao TP, Kühl M. An updated overview on Wnt signaling pathways: a prelude for more. Circ Res. 2010;106:1798–806.

    Article  CAS  PubMed  Google Scholar 

  28. Rattner A, Hsieh JC, Smallwood PM, Gilbert DJ, Copeland NG, Jenkins NA, et al. A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of Frizzled receptors. Proc Natl Acad Sci USA. 1997;94:2859–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature. 1998;391:357–62.

    Article  CAS  PubMed  Google Scholar 

  30. Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol. 2001;3:683–6.

    Article  CAS  PubMed  Google Scholar 

  31. Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature. 2001;411:321–5.

    Article  CAS  PubMed  Google Scholar 

  32. Dijksterhuis JP, Petersen J, Schulte G. WNT/Frizzled signalling: receptor-ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR review 3. Br J Pharmacol. 2014;171:1195–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Semenov MV, Habas R, Macdonald BT, He X. Snapshot: noncanonical Wnt signaling pathways. Cell. 2007;131:1378.

    Article  PubMed  Google Scholar 

  34. Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y. Wnt5a inhibits the canonical Wnt pathway by promoting GSK-3-independent β-catenin degradation. J Cell Biol. 2003;162:899–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weidinger G, Moon RT. When Wnts antagonize Wnts. J Cell Biol. 2003;162:753–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stoick-Cooper CL, Weidinger G, Riehle KJ, Hubbert C, Major MB, Fausto N, et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development. 2007;134:479–89.

    Article  CAS  PubMed  Google Scholar 

  37. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4:68–75.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Niehrs C. The complex world of Wnt receptor signalling. Nat Rev Mol Cell Biol. 2012;13:767–79.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y. Wnt/Planar cell polarity signaling: a new paradigm for cancer therapy. Mol Cancer Ther. 2009;8:2103–9.

    Article  CAS  PubMed  Google Scholar 

  40. Slusarski DC, Corces VG, Moon RT. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature. 1997;390:410–3.

    Article  CAS  PubMed  Google Scholar 

  41. Hendrickx M, Leyns L. Non-conventional Frizzled ligands and Wnt receptors. Dev Growth Differ. 2008;50:229–43.

    Article  CAS  PubMed  Google Scholar 

  42. Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet. 2006;7:185–99.

    Article  PubMed  Google Scholar 

  43. Chen Q, Zhang Y, Lu J, Wang Q, Wang S, Cao Y, et al. Embryo-uterine cross-talk during implantation: the role of Wnt signaling. Mol Hum Reprod. 2009;15:215–21.

    Article  CAS  PubMed  Google Scholar 

  44. Harwood BN, Cross SK, Radford EE, Haac BE, De Vries WN. Members of the Wnt signaling pathways are widely expressed in mouse ovaries, oocytes, and cleavage stage embryos. Dev Dyn. 2008;237:1099–111.

    Article  CAS  PubMed  Google Scholar 

  45. Lloyd S, Fleming TP, Collins JE. Expression of Wnt genes during mouse preimplantation development. Gene Expr Patterns. 2003;3:309–12.

    Article  CAS  PubMed  Google Scholar 

  46. Mohamed OA, Dufort D, Clarke HJ. Expression and estradiol regulation of Wnt genes in the mouse blastocyst identify a candidate pathway for embryo-maternal signaling at implantation. Biol Reprod. 2004;71:417–24.

    Article  CAS  PubMed  Google Scholar 

  47. Kemp C, Willems E, Abdo S, Lambiv L, Leyns L. Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and postimplantation development. Dev Dyn. 2005;233:1064–75.

    Article  CAS  PubMed  Google Scholar 

  48. Wang QT, Piotrowska K, Ciemerych MA, Milenkovic L, Scott MP, Davis RW, et al. A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell. 2004;6:133–44.

    Article  CAS  PubMed  Google Scholar 

  49. Xie H, Tranguch S, Jia X, Zhang H, Das SK, Dey SK, et al. Inactivation of nuclear Wnt/β-catenin signaling limits blastocyst competency for implantation. Development. 2008;135:717–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R. Lack of β-catenin affects mouse development at gastrulation. Development. 1995;121:3529–37.

    CAS  PubMed  Google Scholar 

  51. Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W. Requirement for β-catenin in anterior-posterior axis formation in mice. J Cell Biol. 2000;148:567–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. De Vries WN, Evsikov AV, Haac BE, Fancher KS, Holbrook AE, Kemler R, et al. Maternal β-catenin and E-cadherin in mouse development. Development. 2004;131:4435–45.

    Article  PubMed  Google Scholar 

  53. Landeira D, Bagci H, Malinowski AR, Brown KE, Soza-Ried J, Feytout A, et al. Jarid2 coordinates nanog expression and PCP/Wnt signaling required for efficient ESC differentiation and early embryo development. Cell Rep. 2015;12:573–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao C, Chen YG. Dishevelled: the hub of Wnt signaling. Cell Signal. 2010;22:717–27.

    Article  CAS  PubMed  Google Scholar 

  55. Na J, Lykke-Andersen K, Torres Padilla ME, Zernicka-Goetz M. Dishevelled proteins regulate cell adhesion in mouse blastocyst and serve to monitor changes in Wnt signaling. Dev Biol. 2007;302:40–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wansleeben C, Meijlink F. The planar cell polarity pathway in vertebrate development. Dev Dyn. 2011;240:616–26.

    Article  CAS  PubMed  Google Scholar 

  57. van der Horst PH, Wang Y, van der Zee M, Burger CW, Blok LJ. Interaction between sex hormones and Wnt/β-catenin signal transduction in endometrial physiology and disease. Mol Cell Endocrinol. 2012;358:176–84.

    Article  PubMed  Google Scholar 

  58. Cooke PS, Spencer TE, Bartol FF, Hayashi K. Uterine glands: development, function and experimental model systems. Mol Hum Reprod. 2013;19:547–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hayashi K, Yoshioka S, Reardon SN, Rucker EB, Spencer TE, DeMayo FJ, et al. WNTs in the neonatal mouse uterus: potential regulation of endometrial gland development. Biol Reprod. 2011;84:308–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wetendorf M, DeMayo FJ. The progesterone receptor regulates implantation, decidualization, and glandular development via a complex paracrine signaling network. Mol Cell Endocrinol. 2012;357:108–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt4 signalling. Nature. 1999;397:405–9.

    Article  CAS  PubMed  Google Scholar 

  62. Franco HL, Dai D, Lee KY, Rubel CA, Roop D, Boerboom D, et al. Wnt4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse. FASEB J. 2011;25:1176–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miller C, Sassoon DA. Wnt7a maintains appropriate uterine patterning during the development of the mouse female reproductive tract. Development. 1998;125:3201–11.

    CAS  PubMed  Google Scholar 

  64. Dunlap KA, Filant J, Hayashi K, Rucker EB, Song G, Deng JM, et al. Postnatal deletion of Wnt7a inhibits uterine gland morphogenesis and compromises adult fertility in mice. Biol Reprod. 2011;85:386–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mericskay M, Kitajewski J, Sassoon D. Wnt5a is required for proper epithelial-mesenchymal interactions in the uterus. Development. 2004;131:2061–72.

    Article  CAS  PubMed  Google Scholar 

  66. Jeong JW, Lee HS, Franco HL, Broaddus RR, Taketo MM, Tsai SY, et al. β-Catenin mediates glandular formation and dysregulation of β-catenin induces hyperplasia formation in the murine uterus. Oncogene. 2009;28:31–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arango NA, Szotek PP, Manganaro TF, Oliva E, Donahoe PK, Teixeira J. Conditional deletion of β-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium. Dev Biol. 2005;288:276–83.

    Article  CAS  PubMed  Google Scholar 

  68. Deutscher E, Hung-Chang Yao H. Essential roles of mesenchyme-derived β-catenin in mouse Müllerian duct morphogenesis. Dev Biol. 2007;307:227–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Das SK. Cell cycle regulatory control for uterine stromal cell decidualization in implantation. Reproduction. 2009;137:889–99.

    Article  CAS  PubMed  Google Scholar 

  70. Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev. 2014;35:851–905.

    Article  CAS  PubMed  Google Scholar 

  71. Hayashi K, Erikson DW, Tilford SA, Bany BM, Maclean JA, Rucker EB, et al. Wnt genes in the mouse uterus: potential regulation of implantation. Biol Reprod. 2009;80:989–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang Q, Lu J, Zhang S, Wang S, Wang W, Wang B, et al. Wnt6 is essential for stromal cell proliferation during decidualization in mice. Biol Reprod. 2013;88:5.

    Article  PubMed  Google Scholar 

  73. Hatta K, Chen Z, Carter AL, Leno-Durán E, Zhang J, Ruiz-Ruiz C, et al. Orphan receptor kinase ROR2 is expressed in the mouse uterus. Placenta. 2010;31:327–33.

    Article  CAS  PubMed  Google Scholar 

  74. Herington JL, Bi J, Martin JD, Bany BM. β-Catenin (CTNNB1) in the mouse uterus during decidualization and the potential role of two pathways in regulating its degradation. J Histochem Cytochem. 2007;55:963–74.

    Article  CAS  PubMed  Google Scholar 

  75. Paria BC, Ma W, Tan J, Raja S, Das SK, Dey SK, et al. Cellular and molecular responses of the uterus to embryo implantation can be elicited by locally applied growth factors. Proc Natl Acad Sci USA. 2001;98:1047–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aoki K, Taketo MM. Tissue-specific transgenic, conditional knockout and knock-in mice of genes in the canonical Wnt signaling pathway. Methods Mol Biol. 2008;468:307–31.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang L, Patterson AL, Teixeira JM, Pru JK. Endometrial stromal β-catenin is required for steroid-dependent mesenchymal-epithelial cross talk and decidualization. Reprod Biol Endocrinol. 2012;10:75.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Li Q, Kannan A, Wang W, Demayo FJ, Taylor RN, Bagchi MK, et al. Bone morphogenetic protein 2 functions via a conserved signaling pathway involving Wnt4 to regulate uterine decidualization in the mouse and the human. J Biol Chem. 2007;282:31725–32.

    Article  CAS  PubMed  Google Scholar 

  79. Lee KY, Jeong JW, Wang J, Ma L, Martin JF, Tsai SY, et al. Bmp2 is critical for the murine uterine decidual response. Mol Cell Biol. 2007;27:5468–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li Q, Kannan A, Das A, Demayo FJ, Hornsby PJ, Young SL, et al. Wnt-4 acts downstream of Bmp2 and functions via β-catenin signaling pathway to regulate human endometrial stromal cell differentiation. Endocrinology. 2013;154:446–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Carson DD, Lagow E, Thathiah A, Al-Shami R, Farach-Carson MC, Vernon M, et al. Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening. Mol Hum Reprod. 2002;8:871–9.

    Article  CAS  PubMed  Google Scholar 

  82. Kao LC, Tulac S, Lobo S, Imani B, Yang JP, Germeyer A, et al. Global gene profiling in human endometrium during the window of implantation. Endocrinology. 2002;143:2119–38.

    Article  CAS  PubMed  Google Scholar 

  83. Duncan WC, Shaw JL, Burgess S, McDonald SE, Critchley HO, Horne AW. Ectopic pregnancy as a model to identify endometrial genes and signaling pathways important in decidualization and regulated by local trophoblast. PLoS One. 2011;6:e23595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu Y, Kodithuwakku SP, Ng PY, Chai J, Ng EH, Yeung WS, et al. Excessive ovarian stimulation up-regulates the Wnt signaling molecule DKK1 in human endometrium and may affect implantation: an in vitro co-culture study. Hum Reprod. 2010;25:479–90.

    Article  PubMed  Google Scholar 

  85. Timeva T, Shterev A, Kyurkchiev S. Recurrent implantation failure: the role of the endometrium. J Reprod Infertil. 2014;15:173–83.

    PubMed  PubMed Central  Google Scholar 

  86. Larsen EC, Christiansen OB, Kolte AM, Macklon N. New insights into mechanisms behind miscarriage. BMC Med. 2013;11:154.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Koler M, Achache H, Tsafrir A, Smith Y, Revel A, Reich R. Disrupted gene pattern in patients with repeated in vitro fertilization (IVF) failure. Hum Reprod. 2009;24:2541–8.

    Article  CAS  PubMed  Google Scholar 

  88. Bao SH, Shuai W, Tong J, Wang L, Chen P, Duan T. Increased Dickkopf-1 expression in patients with unexplained recurrent spontaneous miscarriage. Clin Exp Immunol. 2013;172:437–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li S, Li N, Zhu P, Wang Y, Tian Y, Wang X. Decreased β-catenin expression in first-trimester villi and decidua of patients with recurrent spontaneous abortion. J Obstet Gynaecol Res. 2015;41:904–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of Shandong Province [ZR2014HM089].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhao Yan.

Ethics declarations

Conflicts of interest

Qian Zhang and Junhao Yan declare that they have no conflict of interest.

Human/animal studies

This article does not contain any studies with human or animal subjects performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Yan, J. Update of Wnt signaling in implantation and decidualization. Reprod Med Biol 15, 95–105 (2016). https://doi.org/10.1007/s12522-015-0226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12522-015-0226-4

Keywords

Navigation