Skip to main content

Advertisement

Log in

Progress on the Role of Estrogen and Progesterone Signaling in Mouse Embryo Implantation and Decidualization

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Embryo implantation and decidualization are key steps in establishing a successful pregnancy. Defects in embryo implantation and decidualization can cause a series of adverse chain reactions which can contribute to harmful pregnancy outcomes, such as embryo growth retardation, preeclampsia, miscarriage, premature birth, and so on. Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Decidualization, characterized by proliferation and differentiation of uterine stromal cells, is one of the essential conditions for blastocyst implantation, placental formation, and maintenance of pregnancy and is indispensable for the establishment of pregnancy in many species. Embryo implantation and decidualization are closely regulated by estrogen and progesterone secreted by the ovaries. Many cellular events and molecular signaling network pathways are involved in this process. This article reviews the recent advances in the molecular mechanisms of estrogen- and progesterone-regulating uterine receptivity establishment, blastocyst implantation, and decidualization, in order to better understand the underlying molecular mechanisms of hormonal regulation of embryo implantation and to develop new strategies for preventing or treating embryo implantation defects and improving the pregnancy rate of women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its additional files.

References

  1. Dey SK. How we are born. J Clin Invest. 2010;120(4):952–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fukui Y, Hirota Y, Matsuo M, Gebril M, Akaeda S, Hiraoka T, et al. Uterine receptivity, embryo attachment, and embryo invasion: multistep processes in embryo implantation. Reprod Med Biol. 2019;18(3):234–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18(12):1754–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee KY, Jeong JW, Tsai SY, Lydon JP, DeMayo FJ. Mouse models of implantation. Trends Endocrinol Metab. 2007;18(6):234–9.

    Article  CAS  PubMed  Google Scholar 

  5. Wang H, Xie H, Sun X, Tranguch S, Zhang H, Jia X, et al. Stage-specific integration of maternal and embryonic peroxisome proliferator-activated receptor delta signaling is critical to pregnancy success. J Biol Chem. 2007;282(52):37770–82.

    Article  CAS  PubMed  Google Scholar 

  6. Song H, Lim H, Paria BC, Matsumoto H, Swift LL, Morrow J, et al. Cytosolic phospholipase A2alpha is crucial [correction of A2alpha deficiency is crucial] for “on-time” embryo implantation that directs subsequent development. Development. 2002;129(12):2879–89.

    Article  CAS  PubMed  Google Scholar 

  7. Ye X, Hama K, Contos JJ, Anliker B, Inoue A, Skinner MK, et al. LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature. 2005;435(7038):104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blyth U, Craciunas L, Hudson G, Choudhary M. Maternal germline factors associated with aneuploid pregnancy loss: a systematic review. Hum Reprod Update. 2021;27(5):866–84.

    Article  CAS  PubMed  Google Scholar 

  9. Massalska D, Zimowski JG, Bijok J, Pawelec M, Czubak-Barlik M, Jakiel G, et al. First trimester pregnancy loss: clinical implications of genetic testing. J Obstet Gynaecol Res. 2017;43(1):23–9.

    Article  PubMed  Google Scholar 

  10. Hyde KJ, Schust DJ. Genetic considerations in recurrent pregnancy loss. Cold Spring Harb Perspect Med. 2015;5(3):a023119.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bashiri A, Halper KI, Orvieto R. Recurrent implantation failure-update overview on etiology, diagnosis, treatment and future directions. Reprod Biol Endocrinol. 2018;16(1):121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Penzias AS. Recurrent IVF failure: other factors. Fertil Steril. 2012;97(5):1033–8.

    Article  PubMed  Google Scholar 

  13. Lim HJ, Wang H. Uterine disorders and pregnancy complications: insights from mouse models. J Clin Invest. 2010;120(4):1004–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Daikoku T, Ogawa Y, Terakawa J, Ogawa A, DeFalco T, Dey SK. Lactoferrin-iCre: a new mouse line to study uterine epithelial gene function. Endocrinology. 2014;155(7):2718–24.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim YS, Yang SC, Park M, Choi Y, DeMayo FJ, Lydon JP, et al. Different Cre systems induce differential microRNA landscapes and abnormalities in the female reproductive tracts of Dgcr8 conditional knockout mice. Cell Prolif. 2021;54(3):e12996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harman RM, Cowan RG, Ren Y, Quirk SM. Reduced signaling through the hedgehog pathway in the uterine stroma causes deferred implantation and embryonic loss. Reproduction. 2011;141(5):665–74.

    Article  CAS  PubMed  Google Scholar 

  17. Soyal SM, Mukherjee A, Lee KY, Li J, Li H, DeMayo FJ, et al. Cre-mediated recombination in cell lineages that express the progesterone receptor. Genesis. 2005;41(2):58–66.

    Article  CAS  PubMed  Google Scholar 

  18. Ashary N, Tiwari A, Modi D. Embryo implantation: war in times of love. Endocrinology. 2018;159(2):1188–98.

    Article  CAS  PubMed  Google Scholar 

  19. Sandra O. Hormonal control of implantation. Ann Endocrinol (Paris). 2016;77(2):63–6.

    Article  PubMed  Google Scholar 

  20. Dong G, Sun R, Zhang R, Qin Y, Lu C, Wang X, et al. Pre-implantation triclosan exposure alters uterine receptivity through affecting tight junction protein. Biol Reprod. 2022;107(1):349–357.

  21. Murphy CR. Uterine receptivity and the plasma membrane transformation. Cell Res. 2004;14(4):259–67.

    Article  PubMed  Google Scholar 

  22. Daikoku T, Cha J, Sun X, Tranguch S, Xie H, Fujita T, et al. Conditional deletion of Msx homeobox genes in the uterus inhibits blastocyst implantation by altering uterine receptivity. Dev Cell. 2011;21(6):1014–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun X, Park CB, Deng W, Potter SS, Dey SK. Uterine inactivation of muscle segment homeobox (Msx) genes alters epithelial cell junction proteins during embryo implantation. FASEB J. 2016;30(4):1425–35.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Du X, Chen X, Tang H, Zhou Q, He J, et al. Rictor/mTORC2 is involved in endometrial receptivity by regulating epithelial remodeling. FASEB J. 2021;35(7):e21731.

    Article  CAS  PubMed  Google Scholar 

  25. Whitby S, Zhou W, Dimitriadis E. Alterations in epithelial cell polarity during endometrial receptivity: a systematic review. Front Endocrinol (Lausanne). 2020;11:596324.

    Article  PubMed  Google Scholar 

  26. Monsivais D, Clementi C, Peng J, Titus MM, Barrish JP, Creighton CJ, et al. Uterine ALK3 is essential during the window of implantation. Proc Natl Acad Sci U S A. 2016;113(3):E387–95.

    Article  CAS  PubMed  Google Scholar 

  27. Peng J, Monsivais D, You R, Zhong H, Pangas SA, Matzuk MM. Uterine activin receptor-like kinase 5 is crucial for blastocyst implantation and placental development. Proc Natl Acad Sci U S A. 2015;112(36):E5098–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, et al. Physiological and molecular determinants of embryo implantation. Mol Aspects Med. 2013;34(5):939–80.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Paria BC, Huet-Hudson YM, Dey SK. Blastocyst’s state of activity determines the “window” of implantation in the receptive mouse uterus. Proc Natl Acad Sci U S A. 1993;90(21):10159–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lopata A. Blastocyst-endometrial interaction: an appraisal of some old and new ideas. Mol Hum Reprod. 1996;2(7):519–25.

    Article  CAS  PubMed  Google Scholar 

  31. Das SK, Wang XN, Paria BC, Damm D, Abraham JA, Klagsbrun M, et al. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development. 1994;120(5):1071–83.

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet. 2006;7(3):185–99.

    Article  PubMed  Google Scholar 

  33. Lefevre PL, Murphy BD. Differential gene expression in the uterus and blastocyst during the reactivation of embryo development in a model of delayed implantation. Methods Mol Biol. 2009;550:11–61.

    Article  CAS  PubMed  Google Scholar 

  34. Nieder GL, Weitlauf HM. Effects of metabolic substrates and ionic environment on in-vitro activation of delayed implanting mouse blastocysts. J Reprod Fertil. 1985;73(1):151–7.

    Article  CAS  PubMed  Google Scholar 

  35. Naeslund G, Lundkvist O, Nilsson BO. Transmission electron microscopy of mouse blastocysts activated and growth-arrested in vivo and in vitro. Anat Embryol (Berl). 1980;159(1):33–48.

    Article  CAS  PubMed  Google Scholar 

  36. Yoshinaga K, Adams CE. Delayed implantation in the spayed, progesterone treated adult mouse. J Reprod Fertil. 1966;12(3):593–5.

    Article  CAS  PubMed  Google Scholar 

  37. Van Blerkom J, Chavez DJ, Bell H. Molecular and cellular aspects of facultative delayed implantation in the mouse. Ciba Found Symp. 1978;64:141–72.

    Google Scholar 

  38. Cheong AW, Pang RT, Liu WM, Kottawatta KS, Lee KF, Yeung WS. MicroRNA Let-7a and dicer are important in the activation and implantation of delayed implanting mouse embryos. Hum Reprod. 2014;29(4):750–62.

    Article  CAS  PubMed  Google Scholar 

  39. Diao HL, Su RW, Tan HN, Li SJ, Lei W, Deng WB, et al. Effects of androgen on embryo implantation in the mouse delayed-implantation model. Fertil Steril. 2008;90(4 Suppl):1376–83.

    Article  CAS  PubMed  Google Scholar 

  40. Fu Z, Chen Y, Wu W, Wang S, Wang W, Wang B, et al. Molecular and cellular aspects of blastocyst dormancy and reactivation for implantation. J Stem Cells. 2013;8(2):59–77.

    PubMed  Google Scholar 

  41. He B, Zhang H, Wang J, Liu M, Sun Y, Guo C, et al. Blastocyst activation engenders transcriptome reprogram affecting X-chromosome reactivation and inflammatory trigger of implantation. Proc Natl Acad Sci U S A. 2019;116(33):16621–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fu Z, Wang B, Wang S, Wu W, Wang Q, Chen Y, et al. Integral proteomic analysis of blastocysts reveals key molecular machinery governing embryonic diapause and reactivation for implantation in mice. Biol Reprod. 2014;90(3):52.

    Article  PubMed  Google Scholar 

  43. Lee JE, Oh HA, Song H, Jun JH, Roh CR, Xie H, et al. Autophagy regulates embryonic survival during delayed implantation. Endocrinology. 2011;152(5):2067–75.

    Article  CAS  PubMed  Google Scholar 

  44. Clementi C, Tripurani SK, Large MJ, Edson MA, Creighton CJ, Hawkins SM, et al. Activin-like kinase 2 functions in peri-implantation uterine signaling in mice and humans. PLoS Genet. 2013;9(11):e1003863.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee KY, Jeong JW, Wang J, Ma L, Martin JF, Tsai SY, et al. Bmp2 is critical for the murine uterine decidual response. Mol Cell Biol. 2007;27(15):5468–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li Q, Kannan A, Wang W, Demayo FJ, Taylor RN, Bagchi MK, et al. Bone morphogenetic protein 2 functions via a conserved signaling pathway involving Wnt4 to regulate uterine decidualization in the mouse and the human. J Biol Chem. 2007;282(43):31725–32.

    Article  CAS  PubMed  Google Scholar 

  47. Nagashima T, Li Q, Clementi C, Lydon JP, DeMayo FJ, Matzuk MM. BMPR2 is required for postimplantation uterine function and pregnancy maintenance. J Clin Invest. 2013;123(6):2539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hirota Y, Daikoku T, Tranguch S, Xie H, Bradshaw HB, Dey SK. Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J Clin Invest. 2010;120(3):803–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Q, Lu J, Zhang S, Wang S, Wang W, Wang B, et al. Wnt6 is essential for stromal cell proliferation during decidualization in mice. Biol Reprod. 2013;88(1):5.

    Article  PubMed  Google Scholar 

  50. Matsumoto H. Molecular and cellular events during blastocyst implantation in the receptive uterus: clues from mouse models. J Reprod Dev. 2017;63(5):445–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bhattacharya K, Sengupta P, Dutta S, Syamal AK. Optimization of estrogen dosage for uterine receptivity for implantation in post-coital bilaterally ovariectomized mice. Mol Cell Biochem. 2022.

  52. Pawar S, Hantak AM, Bagchi IC, Bagchi MK. Minireview: steroid-regulated paracrine mechanisms controlling implantation. Mol Endocrinol. 2014;28(9):1408–22.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li F, Devi YS, Bao L, Mao J, Gibori G. Involvement of cyclin D3, CDKN1A (p21), and BIRC5 (Survivin) in interleukin 11 stimulation of decidualization in mice. Biol Reprod. 2008;78(1):127–33.

    Article  CAS  PubMed  Google Scholar 

  54. Kannan A, Fazleabas AT, Bagchi IC, Bagchi MK. The transcription factor C/EBPbeta is a marker of uterine receptivity and expressed at the implantation site in the primate. Reprod Sci. 2010;17(5):434–43.

    Article  CAS  PubMed  Google Scholar 

  55. Paiva P, Menkhorst E, Salamonsen L, Dimitriadis E. Leukemia inhibitory factor and interleukin-11: critical regulators in the establishment of pregnancy. Cytokine Growth Factor Rev. 2009;20(4):319–28.

    Article  PubMed  Google Scholar 

  56. Mantena SR, Kannan A, Cheon YP, Li Q, Johnson PF, Bagchi IC, et al. C/EBPbeta is a critical mediator of steroid hormone-regulated cell proliferation and differentiation in the uterine epithelium and stroma. Proc Natl Acad Sci U S A. 2006;103(6):1870–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu HF, Duan CC, Yang ZQ, Wang YS, Yue ZP, Guo B. HB-EGF ameliorates oxidative stress-mediated uterine decidualization damage. Oxid Med Cell Longev. 2019;2019:6170936.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tan Y, Li M, Cox S, Davis MK, Tawfik O, Paria BC, et al. HB-EGF directs stromal cell polyploidy and decidualization via cyclin D3 during implantation. Dev Biol. 2004;265(1):181–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pawar S, Starosvetsky E, Orvis GD, Behringer RR, Bagchi IC, Bagchi MK. STAT3 regulates uterine epithelial remodeling and epithelial-stromal crosstalk during implantation. Mol Endocrinol. 2013;27(12):1996–2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen H, Malentacchi F, Fambrini M, Harrath AH, Huang H, Petraglia F. Epigenetics of estrogen and progesterone receptors in endometriosis. Reprod Sci. 2020;27(11):1967–74.

    Article  CAS  PubMed  Google Scholar 

  61. Schomberg DW, Couse JF, Mukherjee A, Lubahn DB, Sar M, Mayo KE, et al. Targeted disruption of the estrogen receptor-alpha gene in female mice: characterization of ovarian responses and phenotype in the adult. Endocrinology. 1999;140(6):2733–44.

    Article  CAS  PubMed  Google Scholar 

  62. Hamilton KJ, Hewitt SC, Arao Y, Korach KS. Estrogen hormone biology. Curr Top Dev Biol. 2017;125:109–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Couse JF, Yates MM, Deroo BJ, Korach KS. Estrogen receptor-beta is critical to granulosa cell differentiation and the ovulatory response to gonadotropins. Endocrinology. 2005;146(8):3247–62.

    Article  CAS  PubMed  Google Scholar 

  64. Couse JF, Korach KS. Contrasting phenotypes in reproductive tissues of female estrogen receptor null mice. Ann N Y Acad Sci. 2001;948:1–8.

    Article  CAS  PubMed  Google Scholar 

  65. Couse JF, Korach KS. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev. 1999;20(3):358–417.

    Article  CAS  PubMed  Google Scholar 

  66. Winuthayanon W, Hewitt SC, Orvis GD, Behringer RR, Korach KS. Uterine epithelial estrogen receptor alpha is dispensable for proliferation but essential for complete biological and biochemical responses. Proc Natl Acad Sci U S A. 2010;107(45):19272–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pawar S, Laws MJ, Bagchi IC, Bagchi MK. Uterine epithelial estrogen receptor-alpha controls decidualization via a paracrine mechanism. Mol Endocrinol. 2015;29(9):1362–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schaefer J, Vilos AG, Vilos GA, Bhattacharya M, Babwah AV. Uterine kisspeptin receptor critically regulates epithelial estrogen receptor alpha transcriptional activity at the time of embryo implantation in a mouse model. Mol Hum Reprod. 2021;27(10):gaab060.

  69. Szwarc MM, Hai L, Gibbons WE, Mo Q, Lanz RB, DeMayo FJ, et al. Early growth response 1 transcriptionally primes the human endometrial stromal cell for decidualization. J Steroid Biochem Mol Biol. 2019;189:283–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hantak AM, Bagchi IC, Bagchi MK. Role of uterine stromal-epithelial crosstalk in embryo implantation. Int J Dev Biol. 2014;58(2–4):139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Robertshaw I, Bian F, Das SK. Mechanisms of uterine estrogen signaling during early pregnancy in mice: an update. J Mol Endocrinol. 2016;56(3):R127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Horne AW, Lalani EN, Margara RA, White JO. The effects of sex steroid hormones and interleukin-1-beta on MUC1 expression in endometrial epithelial cell lines. Reproduction. 2006;131(4):733–42.

    Article  CAS  PubMed  Google Scholar 

  73. Park M, Park SH, Park H, Kim HR, Lim HJ, Song H. ADAMTS-1: a novel target gene of an estrogen-induced transcription factor, EGR1, critical for embryo implantation in the mouse uterus. Cell Biosci. 2021;11(1):155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Galgani M, Insabato L, Cali G, Della Gatta AN, Mirra P, Papaccio F, et al. Regulatory T cells, inflammation, and endoplasmic reticulum stress in women with defective endometrial receptivity. Fertil Steril. 2015;103(6):1579-86 e1.

    Article  CAS  PubMed  Google Scholar 

  75. Chung D, Gao F, Ostmann A, Hou X, Das SK. Nucleolar Sik-similar protein (Sik-SP) is required for the maintenance of uterine estrogen signaling mechanism via ERalpha. Mol Endocrinol. 2012;26(3):385–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guo B, Tian XC, Li DD, Yang ZQ, Cao H, Zhang QL, et al. Expression, regulation and function of Egr1 during implantation and decidualization in mice. Cell Cycle. 2014;13(16):2626–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim HR, Kim YS, Yoon JA, Yang SC, Park M, Seol DW, et al. Estrogen induces EGR1 to fine-tune its actions on uterine epithelium by controlling PR signaling for successful embryo implantation. FASEB J. 2018;32(3):1184–95.

    Article  CAS  PubMed  Google Scholar 

  78. Park M, Kim HR, Kim YS, Yang SC, Yoon JA, Lyu SW, et al. Estrogen-induced transcription factor EGR1 regulates c-Kit transcription in the mouse uterus to maintain uterine receptivity for embryo implantation. Mol Cell Endocrinol. 2018;470:75–83.

    Article  CAS  PubMed  Google Scholar 

  79. Mitsunari M, Harada T, Tanikawa M, Iwabe T, Taniguchi F, Terakawa N. The potential role of stem cell factor and its receptor c-kit in the mouse blastocyst implantation. Mol Hum Reprod. 1999;5(9):874–9.

    Article  CAS  PubMed  Google Scholar 

  80. Li X, Lonard DM, O’Malley BW. A contemporary understanding of progesterone receptor function. Mech Ageing Dev. 2004;125(10–11):669–78.

    Article  CAS  PubMed  Google Scholar 

  81. Cope DI, Monsivais D. Progesterone receptor signaling in the uterus is essential for pregnancy success. Cells. 2022;11(9):1474.

  82. Ahn SH, Nguyen SL, Kim TH, Jeong JW, Arora R, Lydon JP, et al. Nuclear progesterone receptor expressed by the cortical thymic epithelial cells dictates thymus involution in murine pregnancy. Front Endocrinol (Lausanne). 2022;13:846226.

    Article  PubMed  Google Scholar 

  83. Conneely OM, Mulac-Jericevic B, Lydon JP, De Mayo FJ. Reproductive functions of the progesterone receptor isoforms: lessons from knock-out mice. Mol Cell Endocrinol. 2001;179(1–2):97–103.

    Article  CAS  PubMed  Google Scholar 

  84. Lee K, Jeong J, Tsai MJ, Tsai S, Lydon JP, DeMayo FJ. Molecular mechanisms involved in progesterone receptor regulation of uterine function. J Steroid Biochem Mol Biol. 2006;102(1–5):41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li R, Wang X, Huang Z, Balaji J, Kim TH, Wang T, et al. The role of epithelial progesterone receptor isoforms in embryo implantation. iScience. 2021;24(12):103487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maurya VK, DeMayo FJ, Lydon JP. Illuminating the “black box” of progesterone-dependent embryo implantation using engineered mice. Front Cell Dev Biol. 2021;9:640907.

    Article  PubMed  PubMed Central  Google Scholar 

  87. DeMayo FJ, Lydon JP. 90 years of progesterone: new insights into progesterone receptor signaling in the endometrium required for embryo implantation. J Mol Endocrinol. 2020;65(1):T1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li Q, Kannan A, DeMayo FJ, Lydon JP, Cooke PS, Yamagishi H, et al. The antiproliferative action of progesterone in uterine epithelium is mediated by Hand2. Science. 2011;331(6019):912–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hewitt SC, Korach KS. Cell biology. A hand to support the implantation window. Science. 2011;331(6019):863–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sucurovic S, Nikolic T, Brosens JJ, Mulac-Jericevic B. Analysis of heart and neural crest derivatives-expressed protein 2 (HAND2)-progesterone interactions in peri-implantation endometriumdagger. Biol Reprod. 2020;102(5):1111–21.

    Article  PubMed  Google Scholar 

  91. Niknafs B, Shokrzadeh N, Reza Alivand M, Bakhtiar Hesam Shariati M. The effect of dexamethasone on uterine receptivity, mediated by the ERK1/2-mTOR pathway, and the implantation window An experimental study. Int J Reprod Biomed. 2022;20(1):47–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Huyen DV, Bany BM. Evidence for a conserved function of heart and neural crest derivatives expressed transcript 2 in mouse and human decidualization. Reproduction. 2011;142(2):353–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Marinić M, Mika K, Chigurupati S, Lynch VJ. Evolutionary transcriptomics implicates HAND2 in the origins of implantation and regulation of gestation length. Elife. 2021;10:e61257.

  94. Niknafs B, Hesam Shariati MB, Shokrzadeh N. miR223-3p, HAND2, and LIF expression regulated by calcitonin in the ERK1/2-mTOR pathway during the implantation window in the endometrium of mice. Am J Reprod Immunol. 2021;85(1):e13333.

    Article  CAS  PubMed  Google Scholar 

  95. Shindoh H, Okada H, Tsuzuki T, Nishigaki A, Kanzaki H. Requirement of heart and neural crest derivatives-expressed transcript 2 during decidualization of human endometrial stromal cells in vitro. Fertil Steril. 2014;101(6):1781–90 e1–5.

  96. Murata H, Tanaka S, Tsuzuki-Nakao T, Kido T, Kakita-Kobayashi M, Kida N, et al. The transcription factor HAND2 up-regulates transcription of the IL15 gene in human endometrial stromal cells. J Biol Chem. 2020;295(28):9596–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Takamoto N, Zhao B, Tsai SY, DeMayo FJ. Identification of Indian hedgehog as a progesterone-responsive gene in the murine uterus. Mol Endocrinol. 2002;16(10):2338–48.

    Article  CAS  PubMed  Google Scholar 

  98. Simon L, Spiewak KA, Ekman GC, Kim J, Lydon JP, Bagchi MK, et al. Stromal progesterone receptors mediate induction of Indian hedgehog (IHH) in uterine epithelium and its downstream targets in uterine stroma. Endocrinology. 2009;150(8):3871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Franco HL, Lee KY, Broaddus RR, White LD, Lanske B, Lydon JP, et al. Ablation of Indian hedgehog in the murine uterus results in decreased cell cycle progression, aberrant epidermal growth factor signaling, and increased estrogen signaling. Biol Reprod. 2010;82(4):783–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lee K, Jeong J, Kwak I, Yu CT, Lanske B, Soegiarto DW, et al. Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat Genet. 2006;38(10):1204–9.

    Article  CAS  PubMed  Google Scholar 

  101. Kurihara I, Lee DK, Petit FG, Jeong J, Lee K, Lydon JP, et al. COUP-TFII mediates progesterone regulation of uterine implantation by controlling ER activity. PLoS Genet. 2007;3(6):e102.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Tang S, Cope DI, Vasquez YM, Monsivais D. BMP/SMAD1/5 signaling in the endometrial epithelium is essential for receptivity and early pregnancy. Endocrinology. 2022;163(5):bqac043.

  103. Guan F, Yang LG, Cheng RH, Cao SX. The effect of BMP family and its receptors on animal reproduction. Sheng Li Ke Xue Jin Zhan. 2004;35(3):262–4.

    CAS  PubMed  Google Scholar 

  104. Monsivais D, Nagashima T, Prunskaite-Hyyrylainen R, Nozawa K, Shimada K, Tang S, et al. Endometrial receptivity and implantation require uterine BMP signaling through an ACVR2A-SMAD1/SMAD5 axis. Nat Commun. 2021;12(1):3386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nallasamy S, Kaya Okur HS, Bhurke A, Davila J, Li Q, Young SL, et al. Msx homeobox genes act downstream of BMP2 to regulate endometrial decidualization in mice and in humans. Endocrinology. 2019;160(7):1631–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Monsivais D, Clementi C, Peng J, Fullerton PT Jr, Prunskaite-Hyyrylainen R, Vainio SJ, et al. BMP7 induces uterine receptivity and blastocyst attachment. Endocrinology. 2017;158(4):979–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yuan C, Li X, Song H, Fan L, Su S, Dong B. BMP7 coordinates endometrial epithelial cell receptivity for blastocyst implantation through the endoglin pathway in cell lines and a mouse model. Exp Ther Med. 2019;17(4):2547–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Matsumoto H, Sato E. Uterine angiogenesis during implantation and decidualization in mice. Reprod Med Biol. 2006;5(2):81–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Plaisier M. Decidualisation and angiogenesis. Best Pract Res Clin Obstet Gynaecol. 2011;25(3):259–71.

    Article  PubMed  Google Scholar 

  110. Koga K, Osuga Y, Tsutsumi O, Yano T, Yoshino O, Takai Y, et al. Demonstration of angiogenin in human endometrium and its enhanced expression in endometrial tissues in the secretory phase and the decidua. J Clin Endocrinol Metab. 2001;86(11):5609–14.

    Article  CAS  PubMed  Google Scholar 

  111. Karizbodagh MP, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H. Implantation Window and angiogenesis. J Cell Biochem. 2017;118(12):4141–51.

    Article  CAS  PubMed  Google Scholar 

  112. Albrecht ED, Pepe GJ. Estrogen regulation of placental angiogenesis and fetal ovarian development during primate pregnancy. Int J Dev Biol. 2010;54(2–3):397–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Walter LM, Rogers PA, Girling JE. The role of progesterone in endometrial angiogenesis in pregnant and ovariectomised mice. Reproduction. 2005;129(6):765–77.

    Article  CAS  PubMed  Google Scholar 

  114. Salmasi S, Sharifi M, Rashidi B. Ovarian stimulation and exogenous progesterone affect the endometrial miR-16-5p, VEGF protein expression, and angiogenesis. Microvasc Res. 2021;133:104074.

    Article  CAS  PubMed  Google Scholar 

  115. Hu XQ, Zhang L. Angiogenesis during pregnancy: all routes lead to MAPKs. J Physiol. 2017;595(14):4571–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nair RR, Verma P, Singh K. Immune-endocrine crosstalk during pregnancy. Gen Comp Endocrinol. 2017;242:18–23.

    Article  CAS  PubMed  Google Scholar 

  117. Shah NM, Imami N, Johnson MR. Progesterone modulation of pregnancy-related immune responses. Front Immunol. 2018;9:1293.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hill JA. Cytokines considered critical in pregnancy. Am J Reprod Immunol. 1992;28(3–4):123–6.

    Article  CAS  PubMed  Google Scholar 

  119. Yockey LJ, Iwasaki A. Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity. 2018;49(3):397–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lissauer D, Eldershaw SA, Inman CF, Coomarasamy A, Moss PA, Kilby MD. Progesterone promotes maternal-fetal tolerance by reducing human maternal T-cell polyfunctionality and inducing a specific cytokine profile. Eur J Immunol. 2015;45(10):2858–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Piccinni MP, Raghupathy R, Saito S, Szekeres-Bartho J. Cytokines, hormones and cellular regulatory mechanisms favoring successful reproduction. Front Immunol. 2021;12:717808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hierweger AM, Engler JB, Friese MA, Reichardt HM, Lydon J, DeMayo F, et al. Progesterone modulates the T-cell response via glucocorticoid receptor-dependent pathways. Am J Reprod Immunol. 2019;81(2):e13084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang Q, Li M, Zhao M, Lu F, Yu X, Li L, et al. Progesterone modulates CD4(+) CD25(+) FoxP3(+) regulatory T cells and TGF-beta1 in the maternal-fetal interface of the late pregnant mouse. Am J Reprod Immunol. 2022;88(2):e13541.

    Article  CAS  PubMed  Google Scholar 

  124. Fedotcheva TA, Fedotcheva NI, Shimanovsky NL. Progesterone as an anti-inflammatory drug and immunomodulator: new aspects in hormonal regulation of the inflammation. Biomolecules. 2022;12(9):1299.

  125. Tafuri A, Alferink J, Moller P, Hammerling GJ, Arnold B. T cell awareness of paternal alloantigens during pregnancy. Science. 1995;270(5236):630–3.

    Article  CAS  PubMed  Google Scholar 

  126. Linscheid C, Petroff MG. Minor histocompatibility antigens and the maternal immune response to the fetus during pregnancy. Am J Reprod Immunol. 2013;69(4):304–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tilburgs T, Scherjon SA, Claas FH. Major histocompatibility complex (MHC)-mediated immune regulation of decidual leukocytes at the fetal-maternal interface. J Reprod Immunol. 2010;85(1):58–62.

    Article  CAS  PubMed  Google Scholar 

  128. Hunt JS, Petroff MG, McIntire RH, Ober C. HLA-G and immune tolerance in pregnancy. FASEB J. 2005;19(7):681–93.

    Article  CAS  PubMed  Google Scholar 

  129. King A, Allan DS, Bowen M, Powis SJ, Joseph S, Verma S, et al. HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur J Immunol. 2000;30(6):1623–31.

    Article  CAS  PubMed  Google Scholar 

  130. Al Abdulmonem W, Rasheed Z, Al Ssadh H, Alkhamiss A, Aljohani AS, Fernandez N. Bacterial lipopolysaccharide induces the intracellular expression of trophoblastic specific CD74 isoform in human first trimester trophoblast cells: correlation with unsuccessful early pregnancy. J Reprod Immunol. 2020;141:103152.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Natural Science Foundation of China (82103189), the Natural Science Foundation of Fujian Province (2020J05302, 2021J011358, and 2022J011363), the Science Foundation of the Fujian provincial Commission of Health and Family Planning (2021GGB026), the Natural Science Basic Research Program of Shaanxi Province (2021JQ-780 and 2023-JC-YB-691), and the Health Education Joint Project of Fujian Province (2019-WJ-34).

Author information

Authors and Affiliations

Authors

Contributions

Yang Wang and Shuai Chen contributed to the study conception and design. Data collection and analysis were performed by Jianghong Cheng, Junyang Li, and Zizhuo Sha. The first draft of the manuscript was written by Yang Wang and Shuai Chen and edited by Bixuan Li, Xianyang Luo, Zhiming Zhang, and Yi Zhou. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Shuai Chen or Yang Wang.

Ethics declarations

Ethics Approval and Consent to Participate

We declare that the study includes a statement on ethics approval and consent.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Sha, Z., Li, J. et al. Progress on the Role of Estrogen and Progesterone Signaling in Mouse Embryo Implantation and Decidualization. Reprod. Sci. 30, 1746–1757 (2023). https://doi.org/10.1007/s43032-023-01169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01169-0

Keywords

Navigation