Skip to main content
Log in

Cardiac Computed Tomography for Amyloidosis

  • Cardiac Computed Tomography (A. Crean and G. Small, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Detecting cardiac amyloid (CA) is challenging. Traditional approaches have not always succeeded in achieving a timely diagnosis. Cardiac magnetic resonance imaging (CMR) has begun to change this, but access to CMR may be limited due to availability or contraindications and may not be considered if clinical suspicion is not high. In contrast, cardiac CT (CCT) is widely available, fast, and has few contraindications. In this review, we will consider the role of CCT to identify CA using anatomy, function, and tissue characteristics.

Recent Findings

We discuss the different CT protocols that have been employed and reflect on the emerging data.

Summary

It is likely that CCT will complement existing modalities. It will help detect disease sooner and allow therapy to start earlier. Thus, CT may yet shed light on CA and provide a brighter future for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kyle RA. Amyloidosis: a convoluted story. Br J Haematol. 2001;114(3):529–38.

    Article  CAS  PubMed  Google Scholar 

  2. • Treibel TA, Bandula S, Fontana M, White SK, Gilbertson JA, Herrey AS, et al. Extracellular volume quantification by dynamic equilibrium cardiac computed tomography in cardiac amyloidosis. J Cardiovasc Comput Tomogr. 2015;9(6):585-92. (Important methodological paper)

    Article  PubMed  PubMed Central  Google Scholar 

  3. •• Scully PR, Patel KP, Saberwal B, Klotz E, Augusto JB, Thornton GD, et al. Identifying cardiac amyloid in aortic stenosis: ECV quantification by CT in TAVR patients. JACC Cardiovasc Imaging. 2020. (Important description of the utility of CT to detect CA)

  4. Scully PR, Treibel TA, Fontana M, Lloyd G, Mullen M, Pugliese F, et al. Prevalence of cardiac amyloidosis in patients referred for transcatheter aortic valve replacement. J Am Coll Cardiol. 2018;71(4):463–4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Treibel TA, Fontana M, Steeden JA, Nasis A, Yeung J, White SK, et al. Automatic quantification of the myocardial extracellular volume by cardiac computed tomography: synthetic ECV by CCT. J Cardiovasc Comput Tomogr. 2017;11(3):221–6.

    Article  PubMed  Google Scholar 

  6. Falk RH. Diagnosis and management of the cardiac amyloidoses. Circulation. 2005;112(13):2047–60.

    Article  PubMed  Google Scholar 

  7. Small GR, Ruddy TD. Straightening out the wrinkles in technetium-99m-labeled bone scintigraphy tracer assessment of cardiac amyloidosis. J Nucl Cardiol. 2021;28(1):100–3.

    Article  PubMed  Google Scholar 

  8. Tanskanen M. Amyloid- historical aspects: Intech Open; 2013. 24 p.

  9. Fine NM, Davis MK, Anderson K, Delgado DH, Giraldeau G, Kitchlu A, et al. Canadian Cardiovascular Society/Canadian Heart Failure Society joint position statement on the evaluation and management of patients with cardiac amyloidosis. Can J Cardiol. 2020;36(3):322–34.

    Article  PubMed  Google Scholar 

  10. Grogan M, Dispenzieri A, Gertz MA. Light-chain cardiac amyloidosis: strategies to promote early diagnosis and cardiac response. Heart. 2017;103(14):1065–72.

    Article  CAS  PubMed  Google Scholar 

  11. Falk RH, Alexander KM, Liao R, Dorbala S. AL (Light-chain) cardiac amyloidosis: a review of diagnosis and therapy. J Am Coll Cardiol. 2016;68(12):1323–41.

    Article  PubMed  Google Scholar 

  12. Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379(11):1007–16.

    Article  CAS  PubMed  Google Scholar 

  13. Gertz MA, Benson MD, Dyck PJ, Grogan M, Coelho T, Cruz M, et al. Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol. 2015;66(21):2451–66.

    Article  CAS  PubMed  Google Scholar 

  14. Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133(24):2404–12.

    Article  CAS  PubMed  Google Scholar 

  15. Quock TP, Yan T, Chang E, Guthrie S, Broder MS. Epidemiology of AL amyloidosis: a real-world study using US claims data. Blood Adv. 2018;2(10):1046–53.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rapezzi C, Lorenzini M, Longhi S, Milandri A, Gagliardi C, Bartolomei I, et al. Cardiac amyloidosis: the great pretender. Heart Fail Rev. 2015;20(2):117–24.

    Article  CAS  PubMed  Google Scholar 

  17. Adams D, Suhr OB, Hund E, Obici L, Tournev I, Campistol JM, et al. First European consensus for diagnosis, management, and treatment of transthyretin familial amyloid polyneuropathy. Curr Opin Neurol. 2016;29(Suppl 1):S14-26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Castano A, Narotsky DL, Hamid N, Khalique OK, Morgenstern R, DeLuca A, et al. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Heart J. 2017;38(38):2879–87.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tanskanen M, Peuralinna T, Polvikoski T, Notkola IL, Sulkava R, Hardy J, et al. Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann Med. 2008;40(3):232–9.

    Article  CAS  PubMed  Google Scholar 

  20. Fontana M, Chung R, Hawkins PN, Moon JC. Cardiovascular magnetic resonance for amyloidosis. Heart Fail Rev. 2015;20(2):133–44.

    Article  CAS  PubMed  Google Scholar 

  21. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2-Evidence base and standardized methods of imaging. J Card Fail. 2019;25(11):e1–39.

    Article  PubMed  Google Scholar 

  22. Pagourelias ED, Mirea O, Duchenne J, Van Cleemput J, Delforge M, Bogaert J, et al. Echo parameters for differential diagnosis in cardiac amyloidosis: a head-to-head comparison of deformation and nondeformation parameters. Circ Cardiovasc Imaging. 2017;10(3):e005588.

    Article  PubMed  Google Scholar 

  23. Fontana M, Banypersad SM, Treibel TA, Abdel-Gadir A, Maestrini V, Lane T, et al. Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: a cardiac MR imaging study. Radiology. 2015;277(2):388–97.

    Article  PubMed  Google Scholar 

  24. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 2 of 2-Diagnostic criteria and appropriate utilization. J Nucl Cardiol. 2020;27(2):659–73.

    Article  PubMed  Google Scholar 

  25. Scully PR, Patel KP, Treibel TA, Thornton GD, Hughes RK, Chadalavada S, et al. Prevalence and outcome of dual aortic stenosis and cardiac amyloid pathology in patients referred for transcatheter aortic valve implantation. Eur Heart J. 2020;41(29):2759–67.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Boldrini M, Cappelli F, Chacko L, Restrepo-Cordoba MA, Lopez-Sainz A, Giannoni A, et al. Multiparametric echocardiography scores for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. 2020;13(4):909–20.

    Article  PubMed  Google Scholar 

  27. • Tang CX, Petersen SE, Sanghvi MM, Lu GM, Zhang LJ. Cardiovascular magnetic resonance imaging for amyloidosis: The state-of-the-art. Trends Cardiovasc Med. 2019;29(2):83-94.. (Useful CMR reference)

    Article  PubMed  Google Scholar 

  28. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–70.

    Article  PubMed  Google Scholar 

  29. Cueto-Garcia L, Reeder GS, Kyle RA, Wood DL, Seward JB, Naessens J, et al. Echocardiographic findings in systemic amyloidosis: spectrum of cardiac involvement and relation to survival. J Am Coll Cardiol. 1985;6(4):737–43.

    Article  CAS  PubMed  Google Scholar 

  30. • Oda S, Nakaura T, Utsunomiya D, Hirakawa K, Takashio S, Izumiya Y, et al. Late iodine enhancement and myocardial extracellular volume quantification in cardiac amyloidosis by using dualenergy cardiac computed tomography performed on a dual-layer spectral detector scanner. Amyloid. 2018;25(2):137-8. (An early description of the use of dual energy CT for amyloid)

    Article  PubMed  Google Scholar 

  31. Lin E, Alessio A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J Cardiovasc Comput Tomogr. 2009;3(6):403–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Walpot J, Juneau D, Massalha S, Dwivedi G, Rybicki FJ, Chow BJW, et al. Left ventricular mid-diastolic wall thickness: normal values for coronary CT angiography. Radiol Cardiothorac Imaging. 2019;1(5):e190034.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pozo E, Kanwar A, Deochand R, Castellano JM, Naib T, Pazos-Lopez P, et al. Cardiac magnetic resonance evaluation of left ventricular remodelling distribution in cardiac amyloidosis. Heart. 2014;100(21):1688–95.

    Article  PubMed  Google Scholar 

  34. Juneau D, Erthal F, Clarkin O, Alzahrani A, Alenazy A, Hossain A, et al. Mid-diastolic left ventricular volume and mass: normal values for coronary computed tomography angiography. J Cardiovasc Comput Tomogr. 2017;11(2):135–40.

    Article  PubMed  Google Scholar 

  35. Dinh W, Nickl W, Smettan J, Kramer F, Krahn T, Scheffold T, et al. Reduced global longitudinal strain in association to increased left ventricular mass in patients with aortic valve stenosis and normal ejection fraction: a hybrid study combining echocardiography and magnetic resonance imaging. Cardiovasc Ultrasound. 2010;8:29.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Siqueira-Filho AG, Cunha CL, Tajik AJ, Seward JB, Schattenberg TT, Giuliani ER. M-mode and two-dimensional echocardiographic features in cardiac amyloidosis. Circulation. 1981;63(1):188–96.

    Article  CAS  PubMed  Google Scholar 

  37. Grogan M, Scott CG, Kyle RA, Zeldenrust SR, Gertz MA, Lin G, et al. Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J Am Coll Cardiol. 2016;68(10):1014–20.

    Article  PubMed  Google Scholar 

  38. Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2015;132(16):1570–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. •• Scully PR, Bastarrika G, Moon JC, Treibel TA. Myocardial Extracellular Volume Quantification by Cardiovascular Magnetic Resonance and Computed Tomography. Curr Cardiol Rep. 2018;20(3):15. (Important description and comparions of CT and MR techniques to measure ECV)

    Article  PubMed  PubMed Central  Google Scholar 

  40. Suzuki M, Toba T, Izawa Y, Fujita H, Miwa K, Takahashi Y, et al. Prognostic impact of myocardial extracellular volume fraction assessment using dual-energy computed tomography in patients treated with aortic valve replacement for severe aortic stenosis. J Am Heart Assoc. 2021;10(18):e020655. https://doi.org/10.1161/JAHA.120.020655.

  41. Emoto T, Kidoh M, Oda S, Nakaura T, Nagayama Y, Sasao A, et al. Myocardial extracellular volume quantification in cardiac CT: comparison of the effects of two different iterative reconstruction algorithms with MRI as a reference standard. Eur Radiol. 2020;30(2):691–701.

    Article  PubMed  Google Scholar 

  42. Emoto T, Oda S, Kidoh M, Nakaura T, Nagayama Y, Sakabe D, et al. Myocardial extracellular volume quantification using cardiac computed tomography: a comparison of the dual-energy iodine method and the standard subtraction method. Acad Radiol. 2021;28(5):e119–26.

    Article  PubMed  Google Scholar 

  43. Frangogiannis NG. The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest. 2017;127(5):1600–12.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Martinez-Naharro A, Kotecha T, Norrington K, Boldrini M, Rezk T, Quarta C, et al. Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2019;12(5):810–9.

    Article  PubMed  Google Scholar 

  45. Ross JC, Hutt DF, Burniston M, Page J, Steeden JA, Gillmore JD, et al. Quantitation of (99m)Tc-DPD uptake in patients with transthyretin-related cardiac amyloidosis. Amyloid. 2018;25(3):203–10.

    Article  CAS  PubMed  Google Scholar 

  46. Tamarappoo B, Han D, Tyler J, Chakravarty T, Otaki Y, Miller R, et al. Prognostic value of computed tomography-derived extracellular volume in TAVR patients with low-flow low-gradient aortic stenosis. JACC Cardiovasc Imaging. 2020;13(12):2591–601.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Oda S, Takashio S, Nagamatsu S, Yamashita T, Uchimura R, Kidoh M, et al. Myocardial extracellular volume quantification using CT for the identification of occult cardiac amyloidosis in patients with severe aortic stenosis referred for transcatheter aortic valve replacement. Amyloid. 2019;26(2):97–8.

    Article  PubMed  Google Scholar 

  48. Small GR, Chow BJ, Ruddy TD. Low-dose cardiac imaging: reducing exposure but not accuracy. Expert Rev Cardiovasc Ther. 2012;10(1):89–104.

    Article  PubMed  Google Scholar 

  49. Rosenblum H, Burkhoff D, Maurer MS. Untangling the physiology of transthyretin cardiac amyloidosis by leveraging echocardiographically derived pressure-volume indices. Eur Heart J. 2020;41(14):1448–50.

    Article  PubMed  Google Scholar 

  50. Boogers MJ, van Werkhoven JM, Schuijf JD, Delgado V, El-Naggar HM, Boersma E, et al. Feasibility of diastolic function assessment with cardiac CT: feasibility study in comparison with tissue Doppler imaging. JACC Cardiovasc Imaging. 2011;4(3):246–56.

    Article  PubMed  Google Scholar 

  51. Oda S, Utsunomiya D, Nakaura T, Yuki H, Kidoh M, Morita K, et al. Identification and assessment of cardiac amyloidosis by myocardial strain analysis of cardiac magnetic resonance imaging. Circ J. 2017;81(7):1014–21.

    Article  CAS  PubMed  Google Scholar 

  52. Phelan D, Collier P, Thavendiranathan P, Popovic ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98(19):1442–8.

    Article  PubMed  Google Scholar 

  53. Quarta CC, Solomon SD, Uraizee I, Kruger J, Longhi S, Ferlito M, et al. Left ventricular structure and function in transthyretin-related versus light-chain cardiac amyloidosis. Circulation. 2014;129(18):1840–9.

    Article  PubMed  Google Scholar 

  54. Buss SJ, Schulz F, Mereles D, Hosch W, Galuschky C, Schummers G, et al. Quantitative analysis of left ventricular strain using cardiac computed tomography. Eur J Radiol. 2014;83(3):e123–30.

    Article  PubMed  Google Scholar 

  55. Ammon F, Bittner D, Hell M, Mansour H, Achenbach S, Arnold M, et al. CT-derived left ventricular global strain: a head-to-head comparison with speckle tracking echocardiography. Int J Cardiovasc Imaging. 2019;35(9):1701–7.

    Article  CAS  PubMed  Google Scholar 

  56. Han X, Cao Y, Ju Z, Liu J, Li N, Li Y, et al. Assessment of regional left ventricular myocardial strain in patients with left anterior descending coronary stenosis using computed tomography feature tracking. BMC Cardiovasc Disord. 2020;20(1):362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Peled Z, Lamash Y, Carasso S, Fischer A, Agmon Y, Mutlak D, et al. Automated 4-dimensional regional myocardial strain evaluation using cardiac computed tomography. Int J Cardiovasc Imaging. 2020;36(1):149–59.

    Article  PubMed  Google Scholar 

  58. Abbara S, Blanke P, Maroules CD, Cheezum M, Choi AD, Han BK, et al. SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the society of Cardiovascular Computed Tomography Guidelines Committee: Endorsed by the North American Society for Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr. 2016;10(6):435–49.

    Article  PubMed  Google Scholar 

  59. Small GR, Kazmi M, deKemp RA, Chow BJ. Established and emerging dose reduction methods in cardiac computed tomography. J Nucl Cardiol. 2011;18(4):570–9.

    Article  PubMed  Google Scholar 

  60. Szilveszter B, Nagy AI, Vattay B, Apor A, Kolossvary M, Bartykowszki A, et al. Left ventricular and atrial strain imaging with cardiac computed tomography: validation against echocardiography. J Cardiovasc Comput Tomogr. 2020;14(4):363–9.

    Article  PubMed  Google Scholar 

  61. Marwan M, Ammon F, Bittner D, Rother J, Mekkhala N, Hell M, et al. CT-derived left ventricular global strain in aortic valve stenosis patients: a comparative analysis pre and post transcatheter aortic valve implantation. J Cardiovasc Comput Tomogr. 2018;12(3):240–4.

    Article  CAS  PubMed  Google Scholar 

  62. McVeigh ER, Pourmorteza A, Guttman M, Sandfort V, Contijoch F, Budhiraja S, et al. Regional myocardial strain measurements from 4DCT in patients with normal LV function. J Cardiovasc Comput Tomogr. 2018;12(5):372–8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nacif MS, Liu Y, Yao J, Liu S, Sibley CT, Summers RM, et al. 3D left ventricular extracellular volume fraction by low-radiation dose cardiac CT: assessment of interstitial myocardial fibrosis. J Cardiovasc Comput Tomogr. 2013;7(1):51–7.

    Article  PubMed  Google Scholar 

  64. McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology. 2015;276(3):637–53.

    Article  PubMed  Google Scholar 

  65. Wang R, Liu X, Schoepf UJ, van AM, Alimohamed I, Griffith LP, et al. Extracellular volume quantitation using dual-energy CT in patients with heart failure: comparison with 3T cardiac MR. Int J Cardiol. 2018;268:236–40.

    Article  PubMed  Google Scholar 

  66. Martinez-Naharro A, Treibel TA, Abdel-Gadir A, Bulluck H, Zumbo G, Knight DS, et al. Magnetic resonance in transthyretin cardiac amyloidosis. J Am Coll Cardiol. 2017;70(4):466–77.

    Article  CAS  PubMed  Google Scholar 

  67. Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J. 2015;36(4):244–51.

    Article  PubMed  Google Scholar 

  68. Fontana M, Martinez-Naharro A, Chacko L, Rowczenio D, Gilbertson JA, Whelan CJ, et al. Reduction in CMR derived extracellular volume with patisiran indicates cardiac amyloid regression. JACC Cardiovasc Imaging. 2021;14(1):189–99.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary R. Small.

Ethics declarations

Conflict of Interest

Dr Small has received honoraria from Pfizer. Dr Poulin, Dr Tavoosi, Mr Small and Dr Crean have no financial disclosures. Dr. Chow has received research and educational support from TeraRecon; and has investment equity in GE.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiac Computed Tomography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Small, G.R., Poulin, A., Tavoosi, A. et al. Cardiac Computed Tomography for Amyloidosis. Curr Cardiovasc Imaging Rep 14, 10 (2021). https://doi.org/10.1007/s12410-021-09560-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12410-021-09560-8

Keywords

Navigation