Skip to main content
Log in

Processing, Packaging, and Storage of Tomato Products: Influence on the Lycopene Content

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

According to several epidemiological studies, the lycopene content of tomato and tomato-based products is related to a variety of health benefits. This has sparked interest in knowing the effect of processing and storage of tomato products on this carotenoid, in order to preserve it during manufacturing and distribution till consumption. Furthermore, in the last few years special attention has been paid to the changes of all-trans and cis-isomers of lycopene during processing and storage. In fact, cis-isomers have shown higher health-promoting properties than all-trans isomers. Heat, light, oxygen, food matrices, and ingredients such as oil are factors that have an important effect on the main lycopene degradation reactions: isomerization and oxidation. These reactions could affect the bioavailability and reduce the bioactivity of these compounds. This article reviews the lycopene changes in tomato and tomato products during preparation operations, processing, and storage using different packaging materials. Special attention has been paid to those technological conditions which may affect the lycopene stability, particularly those able to enhance the cis-forms content that have greater bioavailability than all-trans lycopene isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abushita AA, Daood HG, Biacs PA (2000) Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J Agric Food Chem 48:2075–2081

    Article  CAS  Google Scholar 

  2. Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2010) Volatile compounds and changes in flavour-related enzymes during cold storage of high-intensity pulsed electric field- and heat-processed tomato juices. J Sci Food Agric 90:1597–1604

    Article  CAS  Google Scholar 

  3. Akbudak B, Bolkan H, Cohen N (2009) Determination of physicochemical characteristics in different products of tomato varieties. Int J Food Sci Nutr 60:126–138

    Article  CAS  Google Scholar 

  4. Anese M, Mirolo G, Beraldo P, Lippe G (2013) Effect of ultrasound treatments of tomato pulp on microstructure and lycopene in vitro bioaccessibility. Food Chem 136:458–463

    Article  CAS  Google Scholar 

  5. Angaman DM, Renato M, Azcón-Bieto J, Boronat A (2014) Oxygen consumption and lipoxygenase activity in isolated tomato fruit chromoplasts. J Plant Sci 2(1):5–8

    Google Scholar 

  6. Anguelova T, Warthesen J (2000) Lycopene stability in tomato powders. J Food Sci 65:67–70

    Article  CAS  Google Scholar 

  7. Ax K, Mayer-Miebach E, Link B, Schuchmann H, Schubert H (2003) Stability of lycopene in oil-in-water emulsions. Eng Life Sci 3:199–201

    Article  CAS  Google Scholar 

  8. Balasubramaniam VM, Farkas D (2008) High-pressure food processing. Food Sci Technol Int 14:413–418

    Article  Google Scholar 

  9. Biacs PA, Daood HG (2000) Lipoxygenase-catalysed degradation of carotenoids from tomato in the presence of antioxidant vitamins. Biochem Soc Trans 28:839–845

    Article  CAS  Google Scholar 

  10. Boileau AC, Merchen NR, Wasson K, Atkinson CA, Erdman JW (1999) Cis-lycopene is more bioavailable than trans-lycopene in vitro and in vivo in lymphcannulated ferrets. J Nutr 129:1176–1181

    CAS  Google Scholar 

  11. Boileau TWM, Boileau AC, Erdman JW (2002) Bioavailability of all-trans and cis-isomers of lycopene. Exp Biol Med 227:914–919

    CAS  Google Scholar 

  12. Böhm V, Puspitasari-Nienaber NL, Ferruzzi MG, Schwartz SJ (2002) Trolox equivalent antioxidant capacity of different geometrical isomers of alpha-carotene, beta-carotene, lycopene, and zeaxanthin. J Agric Food Chem 50:221–226

    Article  CAS  Google Scholar 

  13. Bramley PM (2000) Is lycopene beneficial to human health? Phytochemistry 54:233–236

    Article  CAS  Google Scholar 

  14. Britton G, Liaaen-Jensen S, Pfander H (1995) Synthesis from a different perspective: how nature does it. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids. Birkhauser, Basel, pp 1–12

    Google Scholar 

  15. Cámara M, Fernández-Ruiz V, Fernández-Redondo D, Sánchez-Mata MC, Torrecilla JS (2012) Radial basis network analysis to estimate lycopene degradation kinetics in tomato-based products. Food Res Int 49:453–458

    Article  CAS  Google Scholar 

  16. Camargo GA, Grillo SLM, Mieli J, Moretti RH (2010) Shelf life of pretreated dried tomato. Food Bioprocess Technol 3:826–833

    Article  Google Scholar 

  17. Capanoglu E, Beekwilder J, Boyacioglu D, Hall R, de Vos R (2008) Changes in antioxidant and metabolite profiles during production of tomato paste. J Agric Food Chem 56:964–973

    Article  CAS  Google Scholar 

  18. Caris-Veyrat C, Schmid A, Carail M, Böhm V (2003) Cleavage products of lycopene produced by in vitro oxidations: characterization and mechanisms of formation. J Agric Food Chem 51:7318–7325

    Article  CAS  Google Scholar 

  19. Chang CH, Lin HY, Chang CY, Liu YC (2006) Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J Food Eng 77:478–485

    Article  CAS  Google Scholar 

  20. Chang CH, Liu YC (2007) Study on lycopene and antioxidant contents variations in tomatoes under air-drying process. J Food Sci 72:532–540

    Article  CAS  Google Scholar 

  21. Chen J, Shi J, Xue SJ, Mac Y (2009) Comparison of lycopene stability in water- and oil-based food model systems under thermal- and light-irradiation treatments. LWT-Food Sci Technol 42:740–747

    Article  CAS  Google Scholar 

  22. Colle IJP, Van Buggenhout S, Van Buggenhout S, Van Loey A, Hendrickx M (2010) High pressure homogenization followed by thermal processing of tomato pulp: influence on microstructure and lycopene in vitro bioaccessibility. Food Res Int 43:2193–2200

    Article  CAS  Google Scholar 

  23. Colle IJP, Lemmens L, Van Buggenhout S, Van Loey A, Hendrickx M (2010) Effect of thermal processing on the degradation, isomerization, and bioaccessibility of lycopene in tomato pulp. J Food Sci 75:753–759

    Article  CAS  Google Scholar 

  24. Colle IJP, Lemmens L, Van Buggenhout S, Van Loey AM, Hendrickx ME (2013) Modeling lycopene degradation and isomerization in the presence of lipids. Food Bioprocess Technol 6:909–918

    Article  CAS  Google Scholar 

  25. Corbo MR, Bevilacqua A, Campaniello D, Ciccarone C, Sinigaglia M (2010) Use of high pressure homogenization as a mean to control the growth of foodborne moulds in tomato juice. Food Control 21:1507–1511

    Article  Google Scholar 

  26. Corey M, Kerr W, Mulligan J, Lavelli V (2011) Phytochemical stability in dried apple and green tea functional products as related to moisture properties. LWT–Food Sci Technol 44:67–74

    Article  CAS  Google Scholar 

  27. Cremona F, Sandei L, Taddei C, Leoni C (2004) Evaluation, over time, of freezing effects on lycopene content and colour of frozen tomato products. Industria conserve 79:379–396

    Google Scholar 

  28. D’Evoli L, Lombardi-Boccia G, Lucarini M (2013) Influence of heat treatments on carotenoid content of cherry tomatoes. Foods 2:352–363

    Article  CAS  Google Scholar 

  29. Davoodi MG, Vijayanand P, Kulkarni SG, Ramana KVR (2007) Effect of different pre-treatments and dehydration methods on quality characteristics and storage stability of tomato powder. LWT–Food SciTechnol 40:1832–1840

    Article  CAS  Google Scholar 

  30. Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014

    Article  CAS  Google Scholar 

  31. Eh ALS, Teoh SG (2012) Novel modified ultrasonication technique for the extraction of lycopene from tomatoes. Ultrason Sonochem 19:151–159

    Article  CAS  Google Scholar 

  32. FAOSTAT (2013) http://faostat.fao.org/site/339/default.aspx. Accessed 20 Feb 2013

  33. Fernandes FAN (2012) High-pressure processing. In: Rodrigues S, Fernandes FAN (eds) Advances in fruit processing technologies. CRC Press, Boca Raton, pp 37–50

    Chapter  Google Scholar 

  34. Gahler S, Otto K, Böhm V (2003) Alterations of vitamin C, total phenolics, and antioxidant capacity as affected by processing tomatoes to different products. J Agric Food Chem 51:7962–7968

    Article  CAS  Google Scholar 

  35. García-Alonso FJ, Bravo S, Casas J, Pérez-Conesa D, Jacob K, Periago MJ (2009) Changes in antioxidant compounds during the shelf life of commercial tomato juices in different packaging materials. J Agric Food Chem 57:6815–6822

    Article  CAS  Google Scholar 

  36. Georgé S, Tourniaire F, Gautier H, Goupy P, Rock E, Caris-Veyrat C (2011) Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chem 124:1603–1611

    Article  CAS  Google Scholar 

  37. Giovanelli G, Zanoni B, Lavelli V, Nani R (2002) Water sorption, drying and antioxidant properties of dried tomato products. J Food Eng 52:135–141

    Article  Google Scholar 

  38. Giovanelli G, Paradiso A (2002) Stability of dried and intermediate moisture tomato pulp during storage. J Agric Food Chem 50:7277–7728

    Article  CAS  Google Scholar 

  39. Goula MA, Adamopoulos GK, Chatzitakis PC, Nikas AV (2006) Prediction of lycopene degradation during a drying process of tomato pulp. J Food Eng 74:37–46

    Article  CAS  Google Scholar 

  40. Graziani G, Pernice R, Lanzuise S, Vitaglione P, Anese M, Fogliano V (2003) Effect of peeling and heating on carotenoid content and antioxidant activity of tomato and tomato-virgin olive oil systems. Eur Food Res Technol 216:116–121

    CAS  Google Scholar 

  41. Gross J (1991) Pigments in vegetables: chlorophylls and carotenoids. Van Nostrand Reinold, New York

    Book  Google Scholar 

  42. Guo WH, Tu CY, Hu CH (2008) Cis-trans isomerizations of β-carotene and lycopene: a theoretical study. J Phys Chem B 112:12158–12167

    Article  CAS  Google Scholar 

  43. Gupta R, Balasubramaniam VM, Schwartz SJ, Francis DM (2010) Storage stability of lycopene in tomato juice subjected to combined pressure-heat treatments. J Agric Food Chem 58:8305–8313

    Article  CAS  Google Scholar 

  44. Hackett MM, Lee JH, Francis D, Schwartz SJ (2004) Thermal stability and isomerization of lycopene in tomato oleoresins from different varieties. J Food Sci 69:536–541

    Article  Google Scholar 

  45. Heinonen IM, Meyer AS (2002) Antioxidants in fruits, berries, and vegetables. In: Jongen W (ed) Fruit and vegetable processing: improving quality. Woodhead Publishing Ltd and CRC Press, Cambridge, pp 56–89

    Google Scholar 

  46. Henry LK, Catignani G, Schwartz S (1998) Oxidative degradation kinetics of lycopene, lutein, and 9-cis and all-trans β-carotene. J Am Oil Chem Soc 75:823–829

    Article  CAS  Google Scholar 

  47. Hsu KC (2008) Evaluation of processing qualities of tomato juice induced by thermal and pressure processing. LWT–Food Sci Technol 41:450–459

    Article  CAS  Google Scholar 

  48. Hsu KC, Tan FJ, Chi HY (2008) Evaluation of microbial inactivation and physicochemical properties of pressurized tomato juice during refrigerated storage. LWT 41:367–375

    Article  CAS  Google Scholar 

  49. Jung S, Samson CT, Lamballerie M (2011) High hydrostatic pressure food processing. In: Proctor A (ed) Alternatives to conventional food processing. Royal Society of Chemistry Publishing, Great Britain, pp 254–306

    Google Scholar 

  50. Kaur D, Sogi DS, Wani AA (2006) Degradation kinetics of lycopene and visual color in tomato peel isolated from pomace. Int J Food Prop 9:781–789

    Article  CAS  Google Scholar 

  51. Kerkhofs NS, Lister CE, Savage GP (2005) Change in colour and antioxidant content of tomato cultivars following forced-air drying. Plant Foods Human Nutr 60:117–121

    Article  CAS  Google Scholar 

  52. Knockaert G, Pulissery SK, Colle I, Van Buggenhout S, Hendrickx M, Van Loey A (2012) Lycopene degradation, isomerization and in vitro bioaccessibility in high pressure homogenized tomato puree containing oil: effect of additional thermal and high pressure processing. Food Chem 135:1290–1297

    Article  CAS  Google Scholar 

  53. Kocabiyik H, Yilmaz N, Tuncel NB, Sumer SK, Buyukcan MB (2014) The effects of middle infrared radiation intensity on the quality of dried tomato products. Int J Food Sci Technol 49:703–710

    Article  CAS  Google Scholar 

  54. Krebbers B, Matser AM, Hoogerwerf SW, Moezelaar R, Tomassen MMM, van den Berg RW (2003) Combined high-pressure and thermal treatments for processing of tomato puree: evaluation of microbial inactivation and quality parameters. Innov Food Sci Emerg Technol 4:377–385

    Article  Google Scholar 

  55. Krokida MK, Karathanos VT, Maroulis ZB (1998) Effect of freeze-drying conditions on shrinkage and porosity of dehydrated agricultural products. J Food Eng 35:369–380

    Article  Google Scholar 

  56. Kumcuoglu S, Yilmaz T, Tavman S (2013) Ultrasound assisted extraction of lycopene from tomato processing wastes. J Food Sci Technol. doi:10.1007/s13197-013-0926-x

  57. Lana MM, van Kooten O, Dekker M, Suurs P, Linssen RFA (2005) Effects of cutting and maturity on lycopene concentration of fresh-cut tomatoes during storage at different temperatures. Acta Hort (ISHS) 682:1871–1878

    Article  CAS  Google Scholar 

  58. Latapi G, Barrett DM (2006) Influence of pre-drying treatments on quality and safety of sun-dried tomatoes. Part I: use of steam blanching, boiling brine blanching and dips in salt or sodium metabisulfite. J Food Sci 71:24–31

    Article  Google Scholar 

  59. Lavelli V, Giovanelli G (2003) Evaluation of heat and oxidative damage during storage of processed tomato products. II. Study of oxidative damage indices. J Sci Food Agric 83:966–971

    Article  CAS  Google Scholar 

  60. Lavelli V, Peri C, Rizzolo A (2000) Antioxidant activity of tomato products as studied by model reactions using xanthine oxidase, myeloperoxidase, and copper-induced lipid peroxidation. J Agric Food Chem 48:1442–1448

    Article  CAS  Google Scholar 

  61. Lavelli V, Kerr W, Sri Harsha PSC (2013) Phytochemical stability in dried tomato pulp and peel as affected by moisture properties. J Agric Food Chem 61:700–707

    Article  CAS  Google Scholar 

  62. Lavelli V, Torresani MC (2011) Modelling the stability of lycopene-rich by-products of tomato processing. Food Chem 125:529–535

    Article  CAS  Google Scholar 

  63. Lin CH, Chen BH (2005) Stability of carotenoids in tomato juice during storage. Food Chem 90:837–846

    Article  CAS  Google Scholar 

  64. Lisiewska Z, Kmiecik W (2000) Effect of storage period and temperature on the chemical composition and organoleptic quality of frozen tomato cubes. Food Chem 70:167–173

    Article  CAS  Google Scholar 

  65. Liu F, Cao X, Wang H, Liao X (2010) Changes of tomato powder qualities during storage. Powder Technol 204:159–166

    Article  CAS  Google Scholar 

  66. Lovric T, Sablek Z, Boskovic M (1970) Cis-trans isomerization of lycopene and colour stability of foam-mat dried tomato powder during storage. J Sci Food Agric 21:641–647

    Article  CAS  Google Scholar 

  67. dos Anjos Lucia, Ferreira A, Yeum KJ, Russell RM, Krinsky NI, Tang G (2003) Enzymatic and oxidative metabolites of lycopene. J Nutr Biochem 14:531–540

    Article  CAS  Google Scholar 

  68. MAGRAMA (2012) Avances de superficies y producciones de cultivos, Noviembre 2012. Ministerio de Agricultura, Alimentación y Medio ambiente (MAGRAMA). http://www.magrama.gob.es/es/estadistica/temas/estadisticas-agrarias/Cuaderno_Noviembre2012corregido_tcm7-261922.pdf. Accessed 20 Feb 2013

  69. Maiani G, Periago-Castón MJ, Catasta G, Toti E, Goñi-Cambrodón I, Bysted A, Granado-Lorencio F, Olmedilla-Alonso B, Knuthsen P, Valoti M, Böhm V, Mayer-Miebach E, Behsnilian D, Schlemmer U (2009) Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res 53:1–25

    Article  Google Scholar 

  70. Makanjuola SA, Akanbi CT, Enujiugha VN (2012) Variations in physico-chemical and sensory qualities of canned unpeeled halved tomatoes as influenced by cultivar, soak treatment and brine composition. Afr J Food Sci 6:52–57

    Article  CAS  Google Scholar 

  71. Mayeaux M, Xu Z, King JM, Prinyawiwatkul W (2006) Effects of cooking conditions on the lycopene content in tomatoes. J Food Sci 71:461–464

    Article  CAS  Google Scholar 

  72. Min S, Jin ZT, Zhang QH (2003) Commercial scale pulsed electric field processing of tomato juice. J Agric Food Chem 51:3338–3344

    Article  CAS  Google Scholar 

  73. Moco S, Capanoglu E, Tikunov Y, Bino RJ, Boyacioglu D, Hall RD, Vervoort J, De Vos RCH (2007) Tissue specialization at the metabolite level is perceived during the development of tomato fruit. J Exp Bot 58:4131–4146

    Article  CAS  Google Scholar 

  74. Morales-de la Peña M, Elez-Martínez P, Martín-Belloso O (2011) Food preservation by pulsed electric fields: an engineering perspective. Food Eng Rev 3:94–107

    Article  Google Scholar 

  75. Müller L, Goupy P, Fröhlich K, Dangles O, Caris-Veyrat K, Böhm V (2011) Comparative study on antioxidant activity of lycopene (Z)-isomers in different assays. J Agric Food Chem 59:4504–4511

    Article  CAS  Google Scholar 

  76. Nguyen M, Francis D, Schwartz S (2001) Thermal isomerization susceptibility of carotenoids in different tomato varieties. J Sci Food Agric 81:910–917

    Article  CAS  Google Scholar 

  77. Nicoli MC, Anese M, Manzocco L (1999) Oil stability and antioxidant properties of an oil tomato food system as affected by processing. Adv Food Sci 21:10–14

    CAS  Google Scholar 

  78. Nisha P, Singhal RS, Pandit AB (2011) Kinetic modelling of colour degradation in tomato puree (Lycopersicon esculentum L.). Food Bioprocess Technol 4(5):781–787

  79. Odriozola-Serrano I, Soliva-Fortuny R, Hernández-Jover T, Martín-Belloso O (2009) Carotenoid and phenolic profile of tomato juices processed by high intensity pulsed electric fields compared with conventional thermal treatments. Food Chem 112:258–266

    Article  CAS  Google Scholar 

  80. Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O (2008) Changes of health-related compounds throughout cold storage of tomato juice stabilized by thermal or high intensity pulsed electric field treatments. Innov Food Sci Emerg Technol 9:272–279

    Article  CAS  Google Scholar 

  81. Odriozola-Serrano O, Aguiló-Aguayo I, Soliva-Fortuny R, Gimeno-Añó V, Martín-Belloso O (2007) Lycopene, vitamin C, and antioxidant capacity of tomato juice as affected by high-intensity pulsed electric fields critical parameters. J Agric Food Chem 55:9036–9042

    Article  CAS  Google Scholar 

  82. Pérez-Conesa D, García-Alonso J, García-Valverde V, Iniesta M, Jacob K, Sánchez-Siles L, Ros G, Periago MJ (2009) Changes in bioactive compounds and antioxidant activity during homogenization and thermal processing of tomato puree. Innov Food Sci Emerg Technol 10:179–188

    Article  CAS  Google Scholar 

  83. Pingret D, Fabiano-Tixier A, Chemat F (2013) Degradation during application of ultrasound in food processing: a review. Food Control 31:593–606

    Article  Google Scholar 

  84. Porrini M, Riso P, Testolin G (1998) Absorption of lycopene from single or daily portions of raw and processed tomato. Br J Nutr 80:353–361

    Article  CAS  Google Scholar 

  85. Qiu W, Jiang H, Wang H, Gao Y (2006) Effect of high hydrostatic pressure on lycopene stability. Food Chem 97:516–523

    Article  CAS  Google Scholar 

  86. Rajchl A, Voldřich M, Čižková H, Hronová M, Ševčík R, Dobiaš J, Pivoňka J (2010) Stability of nutritionally important compounds and shelf life prediction of tomato ketchup. J Food Eng 99:465–470

    Article  CAS  Google Scholar 

  87. Ramakrishnan TV, Francis FJ (1980) Autooxidation of carotenoids and their relative polarity. J Food Qual 3:25–34

    Article  CAS  Google Scholar 

  88. Rao AV, Agarwal S (1999) Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: a review. Nutr Res 19:305–323

    Article  CAS  Google Scholar 

  89. Re R, Bramley PM, Rice-Evans C (2002) Effects of food processing on flavonoids and lycopene status in a Mediterranean tomato variety. Free Radic Res 36:803–810

    Article  CAS  Google Scholar 

  90. Richelle M, Sanchez B, Tavazzi I, Lambelet P, Bortlik K, Williamson G (2010) Lycopene isomerisation takes place within enterocytes during absorption in human subjects. Br J Nutr 103:1800–1807

    Article  CAS  Google Scholar 

  91. Rendueles E, Omer MK, Alvseike O, Alonso-Calleja C, Capita R, Prieto M (2011) Microbiological food safety assessment of high hydrostatic pressure processing: a review. LWT–Food Sci Technol 44:1251–1260

    Article  CAS  Google Scholar 

  92. Rodrigo D, Jolie R, Van Loey A, Hendrickx M (2007) Thermal and high pressure stability of tomato lipoxygenase and hydroperoxide lyase. J Food Eng 79:423–429

    Article  CAS  Google Scholar 

  93. Rodríguez-Amaya DB, Kimura M (2004) Harvestplus handbook for carotenoid analysis. International Food Policy Research Institute and International Center for Tropical Agriculture, Washington

    Google Scholar 

  94. Rubio-Díaz DE, Santos A, Francis DM, Rodríguez-Saona LE (2010) Carotenoid stability during production and storage of tomato juice made from tomatoes with diverse pigment profiles measured by infrared spectroscopy. J Agric Food Chem 58:8692–8698

    Article  CAS  Google Scholar 

  95. Sahlin E, Savage GP, Lister CE (2004) Investigation of the antioxidant properties of tomatoes after processing. J Food Compos Anal 17:635–647

    Article  CAS  Google Scholar 

  96. San Martín MF, Barbosa-Cánovas GV, Swanson BG (2002) Food processing by high hydrostatic pressure. Crit Rev Food Sci Nutr 42:627–645

    Article  Google Scholar 

  97. Sánchez-Moreno C, Plaza L, de Ancos B, Cano P (2004) Effect of combined treatments of high-pressure and natural additives on carotenoid extractability and antioxidant capacity of tomato puree (Lycopersicum esculentum Mill.). Eur Food Res Technol 219:151–160

    Article  CAS  Google Scholar 

  98. Sanchez-Moreno C, Plaza L, de Arcos B, Cano MP (2006) Impact of high-pressure and traditional thermal processing of tomato purée on carotenoid, vitamin C and antioxidant activity. J Sci Food Agric 86:171–179

    Article  CAS  Google Scholar 

  99. Schierle J, Bretzel W, Bühler I, Faccin N, Hess D, Steiner K, Schüep W (1997) Content and isomeric ratio of lycopene in food and human blood plasma. Food Chem 59:459–465

    Article  CAS  Google Scholar 

  100. Seybold C, Fröhlich K, Bitsch R, Otto K, Böhm V (2004) Changes in contents of carotenoids and vitamin E during tomato processing. J Agric Food Chem 52:7005–7010

    Article  CAS  Google Scholar 

  101. Sharma SK, Le Maguer M (1996) Lycopene in tomatoes and tomato pulp fractions. Ital J Food Sci 2:107–113

    Google Scholar 

  102. Shi J, Le Maguer M (2000) Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit Rev Food Sci Nutr 40:1–42

    Article  CAS  Google Scholar 

  103. Shi J, Dai Y, Kakuda Y, Mittal G, Xue SG (2008) Effect of heating and exposure to light on the stability of lycopene in tomato purée. Food Control 19:514–520

    Article  CAS  Google Scholar 

  104. Shi J, Le Maguer M, Bryan M (2002) Lycopene from tomatoes. In: Shi J, Mazza J, Maguer M (eds) Functional foods: biochemical and processing aspects. Vol. 2. CRC Press, Boca Raton, pp 135–167

    Google Scholar 

  105. Shi J, Le Maguer M, Kakuda Y, Liptay A, Niekamp F (1999) Lycopene degradation and isomerisation in tomato dehydration. Food Res Int 32:15–21

    Article  CAS  Google Scholar 

  106. Shi J, Qu Q, Kakuda Y, Yeung D, Jiang Y (2004) Stability and synergistic effect of antioxidative properties of lycopene and other active components. Crit Rev Food Sci Nutr 44:559–573

    Article  CAS  Google Scholar 

  107. Shi J, Le Maguer M, Bryan M, Kakuda Y (2003) Kinetics of lycopene degradation in tomato puree by heat and light irradiation. J Food Process Eng 25:485–498

    Article  Google Scholar 

  108. Soliva-Fortuny R, Balasa A, Knorr D, Martín-Belloso O (2009) Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends Food Sci Technol 20:544–556

    Article  CAS  Google Scholar 

  109. Takeoka GR, Dao L, Flessa S, Gillespie DM, Jewell WT, Huebner B, Bertow D, Ebeler SE (2001) Processing effects on lycopene content and antioxidant activity of tomatoes. J Agric Food Chem 49:3713–3717

    Article  CAS  Google Scholar 

  110. Tangwongchai R, Leward DA, Ames JM (2000) Effect of high-pressure treatment on the texture of cherry tomato. J Agric Food Chem 48:1434–1441

    Article  CAS  Google Scholar 

  111. Thompson KA, Marshall MR, Sims CA, Wei CI, Sargent SA, Scott JW (2000) Cultivar, maturity, and heat treatment on lycopene content in tomatoes. J Food Sci 65:791–795

    Article  CAS  Google Scholar 

  112. Tiaki M, Kubo K, Augusto PED, Cristianini M (2013) Effect of high pressure homogenization (HPH) on the physical stability of tomato juice. Food Res Int 51:170–179

    Article  CAS  Google Scholar 

  113. Toor RK, Savage GP (2006) Effect of semi-drying on the antioxidant components of tomatoes. Food Chem 94:90–97

    Article  CAS  Google Scholar 

  114. Urbanyi G, Horti K (1989) Colour and carotenoid content of quick-frozen tomato cubes during frozen storage. Acta Aliment 18:247–267

    Google Scholar 

  115. Urbonaviciene D, Viskelis P, Viskelis J, Jankauskiene J, Bobinas C (2012) Lycopene and β-carotene in non-blanched and blanched tomatoes. J Food Agric Environ 10:142–146

    CAS  Google Scholar 

  116. Vallverdú-Queralt A, Odriozola-Serrano I, Oms-Oliu G, Lamuela-Raventós RM, Elez-Martínez P, Martín-Belloso O (2013) Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes. Food Chem 141:3131–3138

    Article  CAS  Google Scholar 

  117. Vallverdú-Queralt A, Oms-Oliu G, Odriozola-Serrano I, Lamuela-Raventos RM, Martín-Belloso O, Elez-Martínez P (2012) Effects of pulsed electric fields on the bioactive compound content and antioxidant capacity of tomato fruit. J Agric Food Chem 60:3126–3134

    Article  CAS  Google Scholar 

  118. Varma S, Karwe MV, Lee T (2010) Effect of high hydrostatic pressure processing on lycopene isomers. Int J Food Eng 6:1556–3758

    Article  CAS  Google Scholar 

  119. Vinha AF, Alves RC, Barreira SVP, Castro A, Costa ASG, Oliveira MBPP (2014) Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT–Food Sci Technol 55:197–202

    Article  CAS  Google Scholar 

  120. Viuda-Martos M, Sanchez-Zapata E, Sayas-Barberá E, Sendra E, Pérez-Álvarez JA, Fernández-López J (2014) Tomato and tomato byproducts. Human health benefits of lycopene and its application to meat products: a review. Crit Rev Food Sci Nutr 54:1032–1049

    Article  CAS  Google Scholar 

  121. Wei MY, Giovannucci EL (2012) Lycopene, tomato products, and prostate cancer incidence: a review and reassessment in the PSA screening era. J Oncol 2012:7. doi:10.1155/2012/271063

  122. Willcox JK, Catignani GL, Lazarus S (2003) Tomatoes and cardiovascular health. Crit Rev Food Sci Nutr 43:1–18

    Article  CAS  Google Scholar 

  123. Xianquan S, Shi J, Kakuda Y, Yueming J (2005) Stability of lycopene during food processing and storage. J Med Food 8:413–422

    Article  CAS  Google Scholar 

  124. Zanoni B, Peri C, Nani R, Levelli V (1998) Oxidative heat damage of tomato halves as affected by drying. J Food Eng 31:395–401

    Google Scholar 

  125. Zong W, Cao Y, Jing S, Shi H, Zhao G (2013) Optimization for ultra high pressure isomerization of lycopene. Adv Mater Res 781–784:1430–1433

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge to the company CARCESA S.A.U. (Carnes y Conservas Españolas, Badajoz, Spain), which financed through Agreement 2958/10 IAEA-P some of our laboratory experiments hereby presented. The help of José Maria Fernandez Valera (Department of Food Engineering, UPCT, Spain) and Alexandre Canton (Department of Biological Engineering, Université de Bretagne Occidental, France) for the analysis of those results is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio López-Gómez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Hernández, G.B., Boluda-Aguilar, M., Taboada-Rodríguez, A. et al. Processing, Packaging, and Storage of Tomato Products: Influence on the Lycopene Content. Food Eng Rev 8, 52–75 (2016). https://doi.org/10.1007/s12393-015-9113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-015-9113-3

Keywords

Navigation