Skip to main content
Log in

Oxidative degradation kinetics of lycopene, lutein, and 9-cis and all-trans β-carotene

  • Published:
Journal of the American Oil Chemists' Society

Abstract

The thermal and oxidative degradation of carotenoids was studied in an oil model system to determine their relative stabilities and the major β-carotene isomers formed during the reaction. All-trans β-carotene, 9-cis β-carotene, lycopene, and lutein were heated in safflower seed oil at 75, 85, and 95°C for 24, 12, and 5 h, respectively. The major isomers formed during heating of β-carotene were 13-cis, 9-cis, and an unidentified cis isomer. The degradation kinetics for the carotenoids followed a first-order kinetic model. The rates of degradation were as follows: lycopene>all-trans β-carotene≈9-cis β-carotene>lutein. The values for the thermodynamic parameters indicate that a kinetic compensation effect exists between all of the carotenoids. These data suggest that lycopene was most susceptible to degradation and lutein had the greatest stability in the model system of the carotenoids tested. Furthermore, there was no significant difference in the rates of degradation for 9-cis and all-trans β-carotene under the experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bendich, A. Recent Advances in Clinical Research Involving Carotenoids, Pure Appl. Chem. 66:1017–1024 (1994).

    CAS  Google Scholar 

  2. Gey, K., Prospects for the Prevention of Free Radical Disease, Regarding Cancer and Cardiovascular Disease, Br. Med. Bull. 49:679–699 (1993).

    CAS  Google Scholar 

  3. Govannucci, E., A. Ascherio, E.B. Rimm, M.J. Stampfer, G.A. Colditz, and W.C. Willett, Intake of Carotenoids and Retinol in Relation to Risk of Prostate Cancer, J. Natl. Cancer Inst. 87:1767–1776 (1995).

    Article  Google Scholar 

  4. Kennedy, T.A., and D.C. Liebler, Peroxyl Radical Oxidation of β-Carotene: Formation of β-Carotene Epoxides, Chem. Res. Toxicol. 4:290–295 (1991).

    Article  CAS  Google Scholar 

  5. Warner, K., and E. Frankel, Effects of β-Carotene on Light Stability of Soybean Oil, J. Am. Oil. Chem. Soc. 64:213–218 (1987).

    Article  CAS  Google Scholar 

  6. Kiritsakis, A., and L.R. Dugan, Studies in Photooxidation of Olive Oil, Ibid.:892–896 (1985).

    Article  CAS  Google Scholar 

  7. Foote, C., and R. Denny, Chemistry of Singlet Oxygen. VII. Quenching by β-Carotene, J. Am. Chem. Soc. 90:6233 (1968).

    Article  CAS  Google Scholar 

  8. Baloch, A.K., K.A. Buckle, and R.A. Edwards, Stability of β-Carotene in Model Systems Containing Sulphite, J. Food Technol. 12:309–316 (1977).

    Article  CAS  Google Scholar 

  9. Pesek, C.A. and J.J. Warthesen, Characterization of the Photodegradation of β-Carotene in Aqueous Model Systems, J. Food Sci. 53:1517–1520 (1988).

    Article  CAS  Google Scholar 

  10. Minguez-Mosquera, M.I., and M. Jaren-Galan, Kinetics of the Decolouring of Carotenoid Pigments, J. Sci. Food Agric. 67:153–161 (1995).

    Article  Google Scholar 

  11. Stefanovich, A.F., and M. Karel, Kinetics of Beta-Carotene Degradation at Temperatures Typical of Air Drying of Foods, J. Food Proc. Pres. 6:227–242 (1982).

    Article  CAS  Google Scholar 

  12. Chou, H., and W. Breene, Oxidative Decoloration of β-Carotene in Low-Moisture Model Systems, J. Food Sci. 37:66–68 (1972).

    Article  CAS  Google Scholar 

  13. Haralampu, S.G., and M. Karel, Kinetic Models for Moisture Dependence of Ascorbic Acid and β-Carotene Degradation in Dehydrated Sweet Potato, Ibid.:1872–1873 (1983).

    Article  CAS  Google Scholar 

  14. Ramakrishnan, T.V., and F.J. Francis, Stability of Carotenoids in Model Aqueous Systems, J. Food Qual. 2:177–189 (1979).

    Article  CAS  Google Scholar 

  15. El-Tinay, A.H., and C.O. Chichester, Oxidation of β-Carotene. Site of Initial Attack, J. Org. Chem. 35:2290–2293 (1970).

    Article  CAS  Google Scholar 

  16. Goldman, M., B. Horev, and I. Saguy, Decolorization of β-Carotene in Model Systems Simulating Dehydrated Foods. Mechanism and Kinetic Principles, J. Food Sci. 48:751–754 (1983).

    Article  CAS  Google Scholar 

  17. Philip, T., and F.J. Francis, Oxidation of Capsanthin, Ibid.:96–97 (1971).

    Article  CAS  Google Scholar 

  18. Mordi, R.C., J.C. Walton, G.W. Burton, L. Hughes, K.U. Ingold, and D.A. Lindsay, Exploratory Study of β-Carotene Autoxidation, Tetrahedron Lett. 32:4203–4206 (1991).

    Article  CAS  Google Scholar 

  19. O’Neil, C.A. and S.J. Schwartz, Chromatographic Analysis of cis/trans Carotenoid Isomers, J. Chromatogr. 624:235–252 (1992).

    Article  CAS  Google Scholar 

  20. Emenhiser, C., G. Englert, L.C. Sander, B. Ludwig, and S.J. Schwartz, Isolation and Structural Elucidation of the Predominant Geometrical Isomers of α-Carotene, J. Chromatogr. A 719:333–343 (1996).

    Article  CAS  Google Scholar 

  21. Sander, L.C., K.E. Sharpless, N.E. Craft, and S.A. Wise, Development of Engineered Stationary Phases for the Separation of Carotenoid Isomer, Anal. Chem. 66:1667–1674 (1994).

    Article  CAS  Google Scholar 

  22. Rhim, J.W., V.A. Jones, and K.R. Swartzel, Appearance of a Kinetic Compensation Effect in the Acid-Catalyzed Hydrolysis of Disaccharides, J. Food Sci. 54:222–223 (1989).

    Article  CAS  Google Scholar 

  23. Pysiak, J., and B. Sabalski, Compensation Effect and Isokinetic Temperature in Thermal Dissociation Reactions of the Type Asolid = Bsolid + Cgas. Interpretation of the Arrhenius Equation as a Projection Correlation, J. Thermal Anal. 17:287 (1979).

    Article  Google Scholar 

  24. Ray, A.A., Statistical Analysis System User’s Guide: Statistics, Statistical Analysis System Institute, Cary, 1990.

    Google Scholar 

  25. Stahl, W., and H. Sies, Physical Quenching of Singlet Oxygen and cis-trans Isomerization of Carotenoids, Ann. N.Y. Acad. Sci. 691:10–19 (1993).

    Article  CAS  Google Scholar 

  26. Levin, G., and S. Mokady, Antioxidant Activity of 9-cis Compared to All-trans β-Carotene In Vitro, Free Radicals Biol. Med. 17:77–82 (1994).

    Article  CAS  Google Scholar 

  27. Jimenez, C., and U. Pick, Differential Reactivity of β-Carotene Isomers from Dunaliella bardawil Toward Oxygen Radicals, Plant Physiol. 101:385–390 (1993).

    CAS  Google Scholar 

  28. DiMascio, P., S. Kaiser, and H. Sies, Lycopene as the Most Efficient Biological Carotenoid Singlet Oxygen Quencher, Arch. Biochem. Biophys. 274:532–538 (1989).

    Article  CAS  Google Scholar 

  29. Canjura, F.L., S.J. Schwartz, and R.V. Nunes, Degradation Kinetics of Chlorophylls and Chlorophyllides, J. Food Sci. 56:1639–1643 (1991).

    Article  CAS  Google Scholar 

  30. Rhim, J.W., V.A. Jones, and K.R. Swartzel, Kinetic Compensation Effect in the Heat Denaturation of Whey Protein, Ibid.:589–592 (1990).

    Article  CAS  Google Scholar 

  31. Lessin, W.J., G.L. Catignani, and S.J. Schwartz, Quantification of cis-trans Isomers of Provitamin A Carotenoids in Fresh and Processed Fruits and Vegetables, J. Agric. Food Chem. 45:3728–3732 (1997).

    Article  CAS  Google Scholar 

  32. Emenhiser, C., L.C. Sanders, and S.J. Schwartz, Capability of a Polymeric C30 Stationary Phase to Resolve cis-trans Carotenoid Isomers in a Reversed Phase Liquid Chromatography, J. Chromatogr. A 707:205–216 (1995).

    Article  CAS  Google Scholar 

  33. Pettersson, A., and L. Jonsson, Separation of cis-trans Isomers of Alpha- and Beta-Carotene by Adsorption HPLC and Identification with Diode Array Detection, J. Micronutr. Anal. 8:23–41 (1990).

    Google Scholar 

  34. O’Neil, C.A., S.J. Schwartz, and G.L. Catignani, Comparison of Liquid Chromatographic Methods for Determination of cis-trans Isomers of β-Carotene, Off. Anal. Chem. 74:36–42 (1991).

    CAS  Google Scholar 

  35. Chandler, L.A., and S.J. Schwartz, Isomerization and Losses of trans-β-Carotene in Sweet Potatoes as Affected by Processing Treatments, J. Agric. Food Chem. 36:129–133 (1988).

    Article  CAS  Google Scholar 

  36. Chen, B.H., T.M. Chen, and J.T. Chien, Kinetic Model for Studying the Isomerization of α- and β-Carotene During Heating and Illumination, Ibid.:2391–2397 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Schwartz.

About this article

Cite this article

Henry, L.K., Catignani, G.L. & Schwartz, S.J. Oxidative degradation kinetics of lycopene, lutein, and 9-cis and all-trans β-carotene. J Amer Oil Chem Soc 75, 823–829 (1998). https://doi.org/10.1007/s11746-998-0232-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-998-0232-3

Key words

Navigation