Skip to main content

Advertisement

Log in

The Importance of the Wild Cane Saccharum spontaneum for Bioenergy Genetic Breeding

  • Review Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The relative easiness of interspecific hybridization between sugarcane and other closely related wild grass species presents an excellent way for breeders to genetically improve it, through conventional plant breeding. Among the closely related species to sugarcane, Saccharum spontaneum has the greatest potential as a source of genetic variation for a number of traits. In addition, the species presents several features, including outstanding adaptability to different habitats, and resistance to several diseases, which makes it an excellent genetic resource for breeding, particularly when aiming at bioenergy production and low-input adaptability, with the extra benefit of increased carbon sequestration. In this review, currently available information related to S. spontaneum has been compiled to help breeders in their efforts to explore, for breeding purposes aiming at bioenergy, the tremendous, and yet untapped, genetic variability present in this species. Numerous traits inherent to S. spontaneum, with emphasis on those advantageous for bioenergy production, are presented in an attempt to put together current literature related to its potential role as a genetic resource, for breeding energy canes. With the potential to enable a significant increase in carbon deposition depth and accumulation, an increase in water productivity, S. spontaneum can generate energy cane germplasm adapted to the actively managed cropland and to areas with contaminated soil, to mitigate greenhouse gas emissions annually, improving the climate resiliency of agricultural production. The emerging discipline of phenomics is proposed to characterize S. spontaneum germplasm, aiming at energy cane breeding, for climate change mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken, K.S., P.A. Jackson, and C.L. McIntyre. 2005. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theoretical and Applied Genetics 110: 789–801.

    Article  CAS  PubMed  Google Scholar 

  • Al-Janabi, S.M., R.J. Honeycutt, and M. McClelland. 1993. A genetic linkage map of Saccharum spontaneum L. ‘SES 208’. Genetics 134: 1249–1260.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen Jr., L.H., V.G. Kakani, J.C. Vu, and K.J. Boote. 2011. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. Journal of Plant Physiology 168 (16): 1909–1918. doi:10.1016/j.jplph.2011.05.005.

    Article  CAS  PubMed  Google Scholar 

  • Amalraji, V.A., R. Balakrishnam, and A.W. Jebadhas. 2006. Constituting a core collection of Saccharum spontaneum L. and comparison of three stratified random sampling procedures. Genetic Resources and Crop Evolution 53: 1563–1572.

    Article  Google Scholar 

  • Arcenaux, G. 1965. Cultivated sugarcanes of the world and their botanical derivation. Proceedings of ISSCT 12: 844.

  • Babu, C.N. 1965. Genetical studies in Saccharum spontaneum. I. Inheritance of habit and occurrence of sprawlers. Proceedings of the International Society of Sugar Cane Technologists 12: 846.

  • Baird, N.A., P.D. Etter, and T.S. Atwood. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3: e337.

    Article  Google Scholar 

  • Barrière, Y., C. Roboulet, and V. Mechin. 2007. Genetics and genomics of lignification in grass cell walls based on maize as model species. Genes Genomes and Genomics 1 (2): 133–156.

    Google Scholar 

  • Berding, N., and B.T. Roach. 1987. Germplasm maintenance and use. In Developments in crop sciences II. Sugarcane improvement through breeding, ed. D.J. Heinz, 143–210. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Berger, B., B. Parent, and M. Tester. 2010. High-throughput shoot imaging to study drought responses. Journal of Experimental Botany 61 (13): 3519–3528. doi:10.1093/jxb/erq201.

    Article  CAS  PubMed  Google Scholar 

  • Bischoff, K.P., K.A. Gravois, T.E. Reagan. 2008. Registration of L79-1002 sugarcane. Journal of Plant Registrations 2 (3): 211–217.

    Article  Google Scholar 

  • Boyer, J.S. 1982. Plant productivity and environment. Science (New York, NY) 218 (4571): 443–448.

    Article  CAS  Google Scholar 

  • Boyer, J.S. 1996. Advances in drought tolerance in plants. Advances in Agronomy 56: 187–219.

    Article  Google Scholar 

  • Brandes, E.W. 1956. Origin, dispersal and use in breeding of the Melanesian garden sugarcanes and their derivative, Saccharum officinarum L. Proceedings of the Congress of the International Society of Sugar Cane Technologists 9: 709–750.

  • Bremer, G. 1961. Problems in breeding and cytology of sugar cane. Euphytica 10: 59–78.

    Article  Google Scholar 

  • Burner, D.M., and B.L. Legendre. 1993. Chromosome transmission and meiotic stability of sugarcane (Saccharum spp.) hybrid derivatives. Crop Science. 33: 600–606. doi:10.2135/cropsci1993.0011183X003300030036x.

    Article  Google Scholar 

  • Carvalho-Netto, O. V., J.A. Bressiani, H.L. Soriano et al. 2014. The potential of the energy cane as the main biomass crop for the cellulosic industry. Chemical and Biological Technologies in Agriculture 1: 20. http://www.chembioagro.com/content/1/1/20.

  • Cosentino, S.L., C. Patane, E. Sanzone, et al. 2007. Effect of soil water content and nitrogen supply on the production of Miscanthus × giganteus Greef and Deu. in a Mediterranean environment. Industrial Crops and Products 25: 75–88.

    Article  Google Scholar 

  • D’Hont, A., L. Grivet, and P. Feldmann. 1996. Characterization of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Molecular and General Genetics 250: 405–413.

    PubMed  Google Scholar 

  • Da Silva, J.A., M.E. Sorrells, and W.L. Burnquist. 1993. RFLP linkage map and genome analysis of Saccharum spontaneum. Genome 36: 782–791.

    Article  CAS  PubMed  Google Scholar 

  • Da Silva, J.A., R.J. Honeycutt, and W.L. Burnquist. 1995. Saccharum spontaneum L. ‘SES 208’ genetic linkage map combining RFLP- and PCR-based markers. Molecular Breeding 1 (2): 165–179.

    Article  CAS  Google Scholar 

  • Da Silva, J.A., and B.S. Sobral. 1996. Genetics of polyploids. In The impact of plant molecular genetics, ed. W.S. Bruno, 3–38. Boston: Birkhauser.

    Chapter  Google Scholar 

  • Da Silva, J.A. 2001. Preliminary analysis of microsatellite markers derived from sugarcane ESTs. Genetics and Molecular Biology 24 (1–4): 155–159.

    Article  Google Scholar 

  • Da Silva, J.A., and J.A. Bressiani. 2005. Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny. Genetics and Molecular Biology 28 (2): 294–298.

    Article  Google Scholar 

  • Da Silva, J.A., and N. Solís-Gracia. 2006. Development of simple sequence repeat markers from genes related to stress resistance in sugarcane. Journal of Subtropical Plant Science 58: 5–11.

    Google Scholar 

  • Da Silva, J.A., J. Veremis, and N. Solís-Gracia. 2007. Saccharum spontaneum gene tagging by markers developed from sugarcane expressed sequence tags. Journal of the Subtropical Plant Science 58: 6–14.

    Google Scholar 

  • Daniels, J., and C.A. Daniels. 1975. Geographical, historical and cultural aspects of the origin of the Indian and Chinese sugarcanes S. barberi and S. sinense. Sugarcane Breeding Newsletter 36: 4–23.

    Google Scholar 

  • De Siqueira Ferreira, S., M.Y. Nishiyama, and A.H. Paterson. 2013. Biofuel and energy crops: high-yield Saccharinae take center stage in the post-genomics era. Genome Biology 14 (6): 210. doi:10.1186/gb-2013-14-6-210.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doorenbos, J., and A.H. Kassam. 1979. Yield response to water. FAO Irrigation and Drainage. Paper no. 33. Rome, FAO.

  • Doorenbos, J., and Pruitt, W.O. 1977. Crop water requirements. FAO Irrigation and Drainage. Paper no. 24. Rome, FAO.

  • Finkel, E. 2009. With ‘phenomics’, plant scientists hope to shift breeding into overdrive. Science 325 (5939): 380–381.

    Article  CAS  PubMed  Google Scholar 

  • Fiorani, F., and U. Schurr. 2013. Future scenarios for plant phenotyping. Annual Review of Plant Biology 64: 267–291. doi:10.1146/annurev-arplant-050312-120137.

    Article  CAS  PubMed  Google Scholar 

  • Gantzer, C.J., S.H. Anderson, and A.L. Thompson. 1990. Estimating soil erosion after 100 years of cropping on sanborn field. Journal of Soil and Water Conservation 45: 641–644.

    Google Scholar 

  • Garcia, A.A., M. Mollinari, and T.G. Marconi. 2013. SNP genotyping allows an in-depth characterization of the genome of sugarcane and other complex autopolyploids. Sci. Rep. 3: 3399. doi:10.1038/srep03399.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giamalva, M.J., S.J. Clark, and J. Stein. 1984. Sugarcane hybrids of biomass. Biomass 6 : 61–68.

    Article  Google Scholar 

  • Glaszmann, J.C., Y.H. Lu, and C. Lanaud. 1990. Variation of nuclear ribosomal DNA in sugarcane. Journal of Genetics and Breeding 44: 191–198.

    Google Scholar 

  • Glover, J.D., C.M. Cox, and J.P. Reganold. 2007. Future farming: A return to roots? Scientific American 297 (2): 82–89.

    Article  PubMed  Google Scholar 

  • Gyssels, G., J. Poesen, and E. Bochet. 2005. Impact of plant roots on the resistance of soils to erosion by water: A review. Progress in Physical Geography 29 (2): 189–217.

    Article  Google Scholar 

  • Ha, M., K. Eun-Deok, and Z.J. Chena. 2009. Duplicate genes increase expression diversity in closely related species and allopolyploids. PNAS 106: 2295–2300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale, A.L., E.O. Dufrene, and T.L. Tew. 2012. Registration of ‘Ho 02-113’ sugarcane. Journal of Plant Registrations 7 (1): 51–57.

    Article  Google Scholar 

  • Hale, A.L., R.P. Viator, and J.C. Veremis. 2014. Identification of freeze tolerant Saccharum spontaneum accessions through a pot-based study for use in sugarcane germplasm enhancement for adaptation to temperate climates. Biomass and Bioenergy 61: 53–57.

    Article  Google Scholar 

  • He, Y.M., H.Y. Chen, and J.J. Chen. 2006. Responses in ion leakage of wild sugarcane (Saccharum spontaneum L.) clones to enhanced UV-B radiation under field conditions. Acta Physiologiae Plantarum 28: 401–409.

    Article  Google Scholar 

  • Irei, S., Y. Terajima, and S. Fukuhara. 2006. Utilization of wild relatives in sugarcane breeding program in Japan. In 8th ISSCT Breeding and Germplasm Workshop Abstracts, 13.

  • Irvine, J.E. 1983. Sugarcane. In Potential productivity of field crops under different environments, ed. W.H. Smith, and S.J. Banda, 361–381. Los Banos: IRRI.

    Google Scholar 

  • Jackob, K., F. Zhou, and A.H. Paterson. 2009. Genetic improvement of C4 grasses as cellulosic biofuels feedstocks. In Vitro Cell. Dev. Bio-Plant 45: 291–305.

    Article  Google Scholar 

  • Janaki Amal, E.K. 1939. Triplo-polyploid in Saccharum spontaneum L. Current Science (Bangalore) 8: 74–77.

    Google Scholar 

  • Kell, D.B. 2011. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Annals of Botany 108 (3): 407–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoll, J.E., W.F. Anderson, and E.P. Richard Jr. 2013. Harvest date effects on biomass quality and ethanol yield of new energycane (Saccharum hyb.) genotypes in the Southeast USA. Biomass and Bioenergy 56: 147–156.

    Article  CAS  Google Scholar 

  • LaSalle, T.J., and P. Hepperly. 2008. Regenerative organic farming: a solution to global warming. Rodale Institute. http://www.rodaleinstitute.org/files/Rodale_Research_Paper-07_30_08.pdf.

  • Leal, M.R.L.V., and A.S. Walter. 2010. Sustainability of the production of ethanol from sugarcane: The Brazilian experience. International Sugar Journal 112 (1339): 390–396.

    CAS  Google Scholar 

  • Lewis, W.H. 1980. Polyploidy in plant evolution. In Polyploidy: Biological relevance, ed. Walter Lewis, 145–147. New York: Plenum Press.

    Chapter  Google Scholar 

  • Li, Y., Y.M. He, and J.J. Chen. 2006. Interspecific responses in flavonoid contents of 28 wild sugarcane clones to enhanced ultraviolet-B radiation under field conditions. American Journal of Plant Physiology 1: 151–159.

    Article  Google Scholar 

  • Li, Y., Y.Q. Zu, and L. Qin. 2007. Effects of three years’ enhanced UV-B radiation on brix of 33 wild sugarcane (Saccharum spontaneum L.) clones at ripening stage. Journal of Agro-Environmental Science 26: 1014–1018.

    Google Scholar 

  • Li, Y., Y.M. He, and L. Qin. 2008. Intraspecific differences in morphology and physiology of two wild sugarcane clones to enhanced UV-B radiation under field conditions. Journal of Agro-Environmental Science 27: 1956–1962.

    CAS  Google Scholar 

  • Lima, M.L.A., A.A.F. Garcia, and K.M. Oliveira. 2002. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theoretical and Applied Genetics 104: 30–38.

    Article  CAS  PubMed  Google Scholar 

  • Macedo, I.C., and J.E.A. Seabra. 2008. Mitigation of GHG emissions using sugarcane bioethanol. In Sugarcane ethanol contribution to climate change mitigation and the environment, ed. P. Zuurbier, and J. van der Vooren, 95–111. Wageningen: Wageningen Academic.

    Google Scholar 

  • Macrelli, S., J. Mogensen, and G. Zacchi. 2012. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnology for Biofuels 5:22. http://www.biotechnologyforbiofuels.com/content/5/1/22.

  • Matsuoka, S., A.J. Kennedy, and E.G. Dos Santos. 2014. Energy cane: its concept, development, characteristics and prospects. Advances in Botany , Article ID 597275. doi:10.1155/2014/597275.

  • McKendry, P. 2002. Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83: 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Milligan, S.B., K.A. Gravois, K.P. Bischoff. 1990. Crop effects on genetic relationships among sugarcane traits. Crop Science 30: 927–931.

    Article  Google Scholar 

  • Milligan, S.B., F.A. Martin, K.P. Bischoff. 1994. Registration of ‘LCP 85-384’ sugarcane. Crop Science 34: 819–820.

    Article  Google Scholar 

  • Ming, R., S.C. Liu, and J.E. Bowers. 2002. Construction of a Saccharum consensus genetic map from two interspecific crosses. Crop Science 42: 570–583.

    Article  CAS  Google Scholar 

  • Ming, R., P.H. Moore, and K.K. Wu. 2006. Sugarcane improvement through breeding and biotechnology. Plant Breeding Reviews 27: 17–118.

    Google Scholar 

  • Moellering, E.R., B. Muthan, and C. Benning. 2010. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science Express 330 (6001):226–228. doi:10.1126/science.1191803.

    CAS  Google Scholar 

  • Mukherjee, S.K. 1950. Search for wild relatives of sugarcane in India. International Sugar Journal 52: 261–262.

    Google Scholar 

  • Mutz, K.O., A. Heilkenbrinker, and M. Lönne. 2013. Transcriptome analysis using next-generation sequencing. Current Opinion in Biotechnology 24 (1): 22–30. doi:10.1016/j.copbio.2012.09.004.

    Article  CAS  PubMed  Google Scholar 

  • Ng, S.B., K.J. Buckingham, and C. Lee. 2011. Exome sequencing identifies the cause of a mendelian disorder. Nature Genetics 42 (1): 30–35. doi:10.1038/ng.499.

    Article  Google Scholar 

  • Nagatomi, S., and K. Degi. 2007. Collection and description of wild sugarcane species indigenous to Japan. Proceedings of the International Society of Sugar Cane Technologists 26: 745–748.

    Google Scholar 

  • Osborn, T.C., J.C. Pires, and J.A. Birchler. 2003. Understanding mechanisms of novel gene expression in polyploids. Trends in Genetics 19 (3): 141–147.

    Article  CAS  PubMed  Google Scholar 

  • Panje, R. 1954. Studies in Saccharum spontaneum and allied grasses. III. Recent Exploration for Saccharum spontaneum and related grasses in India. Proceedings of the International Society of Sugar Cane Technologists 8: 491–503.

    Google Scholar 

  • Panje, R. 1972. The role of Saccharum spontaneum in sugarcane breeding. Proceedings of the International Society of Sugar Cane Technologists 14: 217–223.

    Google Scholar 

  • Park, J.-W., N.S. Gracia, and C. Trevino. 2011. Exploitation of conserved intron scanning as a tool for molecular marker development in the saccharum complex. Molecular Breeding 30: 987–999. doi:10.1007/s11032-011-9683-6.

    Article  Google Scholar 

  • Park, J., T. Benatti, and T. Marconi. 2015. Cold responsive gene expression profiling of sugarcane and Saccharum spontaneum with functional analysis of a cold inducible saccharum homolog of NOD26-like intrinsic protein to salt and water stress. PLoS ONE 10 (5): e0125810. doi:10.1371/journal.pone.0125810.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paterson, A.H., E.S. Lander, and J.D. Hewitt. 1988. Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721–726.

    Article  CAS  PubMed  Google Scholar 

  • Paterson, A.H., M. Freeling, H. Tang, and X. Wang. 2010. Insights from the comparison of plant genome sequences. Annual Review of Plant Biology 61: 349–372.

    Article  CAS  PubMed  Google Scholar 

  • Pimentel, D., and T. Patzek. 2007. Ethanol production: Energy and economy issues related to U.S. and Brazilian sugarcane. Natural Resources Research 16: 235–242.

    Article  CAS  Google Scholar 

  • Ponragdee, W., S. Ohara, and S. Sansayawichai. 2013. New type of high yielding sugarcane with lower sugar and higher fiber content suitable for stable co-production of sugar and ethanol for Northeast Thailand. In Proceedings of International Society of Sugar Cane Technologists. Brazil, 28: 12–15.

  • Price, S. 1965. Citology os Saccharum robustum and related sympatric species and natral hybrids. USDA ARS Technical Bulletin 1337.

  • Que, Y., Y. Su, and J. Guo. 2014. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNAseq. PLoS ONE 9 (8): e106476. doi:10.1371/journal.pone.0106476.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramdoyal, K., and G.H. Badaloo. 2007. An evaluation of interspecific families of different nobilised groups in contrasting environments for breeding novel sugarcane clones for biomass. Proceedings of the International Society of Sugar Cane Technologists 26: 632–645.

    Google Scholar 

  • Randall, G.W., and D. Mulla. 2001. Nitrate Nitrogen in surface waters as influenced by climatic conditions and agcultural practices. Journal of Environmental Quality 30: 337–344.

    Article  CAS  PubMed  Google Scholar 

  • Rao, M.S., and P. Weerathaworn. 2009. Diversification of breeding program to develop multipurpose sugarcane cultivars. Sugar Tech 11: 77–79.

    Article  Google Scholar 

  • Ripol, M.I.R., G.A. Churchill, and J.A. da Silva. 1999. Statistical aspects of genetic mapping in autopolyploids. Gene 235: 31–41.

    Article  CAS  PubMed  Google Scholar 

  • Roach, B.T. 1969. Quantitative effects of hybridization in Saccharum officinarum x Saccharum spontaneum crosses. Proceedings of the International Society of Sugar Cane Technologists 13: 939–954.

    Google Scholar 

  • Roach, B.T. 1972. Nobilization of sugarcane. Proceedings of the International Society of Sugar Cane Technologists 14: 206–216.

    Google Scholar 

  • Roach, B.T. 1977. Utilization of Saccharum spontaneum in sugarcane breeding. Proceedings of the International Society of Sugar Cane Technologists 16: 43–57.

    Google Scholar 

  • Samuels, G., A.G. Alexander, and C. Rios. 1984. The production of energy cane in Puerto Rico: The Hatillo project. Journal-American Society of Sugar Cane Technologists 3: 14–17.

    Google Scholar 

  • Scordia, D., S.L. Cosentino, and T.W. Jeffries. 2010. Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Wild.) Hack. Bioresource Technology 101: 5358–5365.

    Article  CAS  PubMed  Google Scholar 

  • Shang, K.C., P.Y. Juang, and T.L. Chu. 1969. A study on the transmission of some important characteristics of Taiwan originated wild cane Saccharum spontaneum L. Proceedings of the International Society of Sugar Cane Technologists 13: 968–974.

    Google Scholar 

  • Sobral, B.W.S., and R. Honeycutt. 1994. Genetics, plants and the polymerase chain reaction. In The polymerase chain reaction, ed. K.B. Mullis, F. Ferre, and A. Gibbs. Boston: Birkhauser.

    Google Scholar 

  • Sreenivasan, T.V., and J. Sreenivasan. 1984. Cytology of Saccharum complex from New Guinea, Indonesia and India. Caryologia 37: 351–357.

    Article  Google Scholar 

  • Sreenivasan, T.V., B.S. Ahloowalia, and D.J. Heinz. 1987. Cytogenetics. In Developments in crop Sciences II. Sugarcane improvement through breeding, ed. D.J. Heinz, 211–253. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Sugimoto, A., W. Ponragdee, and T. Sansayawichai. 2002. Collecting and evaluating of wild relatives of sugarcane as breeding materials of new type sugarcane cultivars of cattle feed in northeast Thailand. JIRCAS Working Report 55–60.

  • Sugimoto, A., Y. Terajima, and T. Terauchi. 2012. Developing new types of sugarcane by hybridization between commercial sugarcane cultivars and wild relatives. Symposio FAO RAP-NIAS. Tsukuba, Japan. Oct. 2011. Proc. RAP Publication 2012/1, 11–24.

  • Tai, P.Y.P., H. He, and H. Gan. 1992. Variation for juice quality and fiber content in crosses between sugarcane and related grasses. Proceedings of the International Society of Sugar Cane Technologists 12: 47–57.

    Google Scholar 

  • Tai, P.Y.P., and J.D. Miler. 2002. Germplasm diversity among four sugarcane species for sugar composition. Crop Science 42: 958–964.

    Article  Google Scholar 

  • Tang, H., J.E. Bowers, and X. Wang. 2008. Synteny and colinearity in plant genomes. Science 320: 486–488.

    Article  CAS  PubMed  Google Scholar 

  • Terajima, Y., M. Matsuoka, and K. Ujihara. 2005. The simultaneous production of sugar and biomass ethanol using high-biomass sugarcane derived from interspecific and intergeneric crosses in Japan. Biomass Asia Workshop, Japan. www.biomass-asia-workshop.jp/biomassws/02workshop/reports/20051213PP01-02a.pdf.

  • Terajima, Y., M. Matsuoka, and S. Irei. 2007. Breeding for high-biomass sugarcane and its utilization in Japan. Proceedings of the International Society of Sugar Cane Technologists 26: 759–762.

    Google Scholar 

  • Tew, T.L., and R.M. Cobill. 2008. Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In Genetic improvement of bioenergy crops, ed. W. Vermerris, 273–294. New York: Springer. doi:10.1007/978-0-387-70805-8_9.

    Chapter  Google Scholar 

  • Vecchiet, M., and R. Jodice. 1996. Experiments on the production of giant reed (Arundo donax L.) biomass. Biomass for energy and environment. In: Proceedings of the Ninth European Bioenergy Conference, vol 1, 70–77.

  • Viator, R.P., and E.P. Richard. 2012. Sugar and energy cane date of planting effects on cane, sucrose and fiber yields. Biomass and Bioenergy 40: 82–85.

    Article  CAS  Google Scholar 

  • Walker, D.I.T. 1972. Utilization of Noble and Saccharum spontaneum in the West Indies. Proceedings of the International Society of Sugar Cane Technologists 14: 224–232.

    Google Scholar 

  • Wang, L.-P., P.A. Jackson, and X. Lu. 2008a. Evolution of sugarcane x Saccharum spontaneum progeny for biomass composition and yield components. Crop Science 48: 951–961.

    Article  Google Scholar 

  • Wang, L., A.R. Portis,Jr., S.P. Moose, and S. Long. 2008b. PPDK and cold tolerance in C4 photosynthesis of Miscanthus. Plant Physiology 148 (1): 557–567. doi:10.1104/pp.108.120709.

  • Wang, Z., M. Gerstein, and M. Snyder. 2009. RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics 10 (1): 57–63. doi:10.1038/nrg2484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel, J.F. 2000. Genome evolution in polyploids. Plant Molecular Biology 42: 225–249.

    Article  CAS  PubMed  Google Scholar 

  • Wu, K.K., W. Burnquist, and M.E. Sorrels.1992. The detection and estimation of linkage in polyploids using single dose restriction fragments. Theoretical and Applied Genetics 83: 294–300.

    Article  CAS  PubMed  Google Scholar 

  • Xia, H., Z. Yan, and X. Chi. 2009. Evaluation of the phytoremediation potential of Saccharum officinarum for Cd-contaminated soil. In Proceedings of the 2009 international conference on energy and environment technology, vol 3. doi:10.1109/iceet.2009.541.

  • Xie, J., Q. Weng, and G. Ye. 2014. Bioetanol production from sugarcane grown in heavy metal-contaminated soils. Bio Resources 9 (2): 2509–2520.

    Article  Google Scholar 

  • Zu, Y.Q., Y. Li, and L. Qin. 2007. Effects of enhanced UV-B radiation on plant height and stem diameter of wild sugarcane (Saccharum spontaneum L.) clones for three consecutive years. Journal of Agro-Environmental Science 25: 503–508.

    Google Scholar 

  • Zu, Y.Q., L.F. Wei, and J.L. Yang, et al. 2005. Effects of UV-B radiation on population dynamic and diversity of 40 wild sugarcane (Saccharum spontaneum L.) clones zhizosphere microorganisms. Journal of Agro-Environmental Science 24: 6–11.

    Google Scholar 

Download references

Acknowledgements

Funds for this work have been provided by the Texas A&M AgriLife Research, Texas A&M University System. I’d like to thank Dr. Nael El-Hout for his excellent suggestions.

Funding

This study was performed as part of the Sugarcane Variety Improvement Program, funded by Texas A&M AgriLife Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. da Silva.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.A. The Importance of the Wild Cane Saccharum spontaneum for Bioenergy Genetic Breeding. Sugar Tech 19, 229–240 (2017). https://doi.org/10.1007/s12355-017-0510-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-017-0510-1

Keywords

Navigation