Skip to main content
Log in

Relationship between impaired myocardial blood flow by positron emission tomography and low-attenuation plaque burden and pericoronary adipose tissue attenuation from coronary computed tomography: From the prospective PACIFIC trial

  • ORIGINAL ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Positron emission tomography (PET) is the clinical gold standard for quantifying myocardial blood flow (MBF). Pericoronary adipose tissue (PCAT) attenuation may detect vascular inflammation indirectly. We examined the relationship between MBF by PET and plaque burden and PCAT on coronary CT angiography (CCTA).

Methods

This post hoc analysis of the PACIFIC trial included 208 patients with suspected coronary artery disease (CAD) who underwent [15O]H2O PET and CCTA. Low-attenuation plaque (LAP, < 30HU), non-calcified plaque (NCP), and PCAT attenuation were measured by CCTA.

Results

In 582 vessels, 211 (36.3%) had impaired per-vessel hyperemic MBF (≤ 2.30 mL/min/g). In multivariable analysis, LAP burden was independently and consistently associated with impaired hyperemic MBF (P = 0.016); over NCP burden (P = 0.997). Addition of LAP burden improved predictive performance for impaired hyperemic MBF from a model with CAD severity and calcified plaque burden (P < 0.001). There was no correlation between PCAT attenuation and hyperemic MBF (r = − 0.11), and PCAT attenuation was not associated with impaired hyperemic MBF in univariable or multivariable analysis of all vessels (P > 0.1).

Conclusion

In patients with stable CAD, LAP burden was independently associated with impaired hyperemic MBF and a stronger predictor of impaired hyperemic MBF than NCP burden. There was no association between PCAT attenuation and hyperemic MBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

CCTA:

Coronary computed tomography angiography

LAP:

Low-attenuation plaque

MBF:

Myocardial blood flow

NCP:

Non-calcified plaque

PCAT:

Pericoronary adipose tissue

PET:

Positron emission tomography

References

  1. Dewey M, Siebes M, Kachelrieß M, Kofoed KF, Maurovich-Horvat P, Nikolaou K. Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia. Nat Rev Cardiol 2020;17:427‐50.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Murthy VL, Bateman TM, Beanlands RS, Berman DS, Borges-Neto S, Chareonthaitawee P, et al. Clinical quantification of myocardial blood flow using PET: Joint position paper of the SNMMI Cardiovascular Council and the ASNC. J Nucl Med 2018;59:273‐93.

    Article  CAS  PubMed  Google Scholar 

  3. Bom MJ, van Diemen PA, Driessen RS, Everaars H, Schumacher SP, Wijmenga JT, et al. Prognostic value of [15O]H2O positron emission tomography-derived global and regional myocardial perfusion. Eur Heart J Cardiovasc Imaging 2020;21:777‐86.

    Article  PubMed  Google Scholar 

  4. Driessen RS, Danad I, Stuijfzand WJ, Raijmakers PG, Schumacher SP, van Diemen PA, et al. Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis. J Am Col Cardiol 2019;73:161‐73.

    Article  Google Scholar 

  5. Williams MC, Kwiecinski J, Doris M, McElhinney P, D’Souza MS, Cadet S, et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction. Circulation 2020;141:1452‐62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Antoniades C, Kotanidis CP, Berman DS. State-of-the-art review article. Atherosclerosis affecting fat: What can we learn by imaging perivascular adipose tissue? J Cardiovasc Comput Tomogr 2019;13:288‐96.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med 2017;99:eaal2658.

    Article  Google Scholar 

  8. Kanaji Y, Hirano H, Sugiyama T, Hoshino M, Horie T, Misawa T, et al. Pre-percutaneous coronary intervention pericoronary adipose tissue attenuation evaluated by computed tomography predicts global coronary flow reserve after urgent revascularization in patients with non-ST-segment-elevation acute coronary syndrome. J Am Heart Assoc 2020;9:e016504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nomura CH, Assuncao-Jr AN, Guimarães PO, Liberato G, Morais TC, Fahel MG, et al. Association between perivascular inflammation and downstream myocardial perfusion in patients with suspected coronary artery disease. Eur Heart J Cardiovasc Imaging 2020;21:599‐605.

    Article  PubMed  Google Scholar 

  10. van Diemen PA, Bom MJ, Driessen RS, Schumacher SP, Everaars H, de Winter RW, et al. Prognostic value of RCA pericoronary adipose tissue CT-attenuation beyond high-risk plaques, plaque volume, and ischemia. JACC Cardiovasc Imaging 2021;14:1598‐610.

    Article  PubMed  Google Scholar 

  11. Xu Y, Cheng X, Hong K, Huang C, Wan L. How to interpret epicardial adipose tissue as a cause of coronary artery disease: A meta-analysis. Coron Artery Dis 2012;23:227‐33.

    Article  PubMed  Google Scholar 

  12. Ito T, Suzuki Y, Ehara M, Matsuo H, Teramoto T, Terashima M, et al. Impact of epicardial fat volume on coronary artery disease in symptomatic patients with a zero calcium score. Int J Cardiol 2013;167:2852‐8.

    Article  PubMed  Google Scholar 

  13. Balcer B, Dykun I, Schlosser T, Forsting M, Rassaf T, Mahabadi AA. Pericoronary fat volume but not attenuation differentiates culprit lesions in patients with myocardial infarction. Atherosclerosis 2018;276:182‐8.

    Article  CAS  PubMed  Google Scholar 

  14. Hell MM, Achenbach S, Schuhbaeck A, Klinghammer L, May MS, Marwan M. CT-based analysis of pericoronary adipose tissue density: Relation to cardiovascular risk factors and epicardial adipose tissue volume. J Cardiovasc Comput Tomogr 2016;10:52‐60.

    Article  PubMed  Google Scholar 

  15. Danad I, Raijmakers PG, Driessen RS, Leipsic J, Raju R, Naoum C, et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol 2017;2:1100‐7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers PG, Lammertsma AA, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: Cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging. J Am Coll Cardiol 2014;64:1464‐75.

    Article  PubMed  Google Scholar 

  17. Joutsiniemi E, Saraste A, Pietilä M, Mäki M, Kajander S, Ukkonen H, et al. Absolute flow or myocardial flow reserve for the detection of significant coronary artery disease? Eur Heart J Cardiovasc Imaging 2014;15:659‐65.

    Article  PubMed  Google Scholar 

  18. Matsumoto H, Watanabe S, Kyo E, Tsuji T, Ando Y, Otaki Y, et al. Standardized volumetric plaque quantification and characterization from coronary CT angiography: A head-to-head comparison with invasive intravascular ultrasound. Eur Radiol 2019;29:6129‐39.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dey D, Cheng VY, Slomka PJ, Nakazato R, Ramesh A, Gurudevan S, et al. Automated 3-dimensional quantification of noncalcified and calcified coronary plaque from coronary CT angiography. J Cardiovasc Comput Tomogr 2009;3:372‐82.

    Article  PubMed  Google Scholar 

  20. Dey D, Achenbach S, Schuhbaeck A, Pflederer T, Nakazato R, Slomka PJ, et al. Comparison of quantitative atherosclerotic plaque burden from coronary CT angiography in patients with first acute coronary syndrome and stable coronary artery disease. J Cardiovasc Comput Tomogr 2014;8:368‐74.

    Article  PubMed  Google Scholar 

  21. Lin A, Manral N, McElhinney P, Killekar A, Matsumoto H, Kwiecinski J, et al. Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study. Lancet Digit Health 2022;4:e256‐65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin A, Nerlekar N, Yuvaraj J, Fernandes K, Jiang C, Nicholls SJ, et al. Pericoronary adipose tissue computed tomography attenuation distinguishes different stages of coronary artery disease: A cross-sectional study. Eur Heart J Cardiovasc Imaging 2021;22:298‐306.

    Article  CAS  PubMed  Google Scholar 

  23. Tzolos E, McElhinney P, Williams MC, Cadet S, Dweck MR, Berman DS, et al. Repeatability of quantitative pericoronary adipose tissue attenuation and coronary plaque burden from coronary CT angiography. J Cardiovasc Comput Tomogr 2021;15:81‐4.

    Article  PubMed  Google Scholar 

  24. Goeller M, Tamarappoo BK, Kwan AC, Cadet S, Commandeur F, Razipour A, et al. Relationship between changes in pericoronary adipose tissue attenuation and coronary plaque burden quantified from coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 2019;20:636‐43.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hell MM, Motwani M, Otaki Y, Cadet S, Gransar H, Miranda-Peats R, et al. Quantitative global plaque characteristics from coronary computed tomography angiography for the prediction of future cardiac mortality during long-term follow-up. Eur Heart J Cardiovasc Imaging 2017;18:1331‐9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pan Y, Jackson RT. Ethnic difference in the relationship between acute inflammation and serum ferritin in US adult males. Epidemiol Infect 2008;136:421‐31.

    Article  CAS  PubMed  Google Scholar 

  27. Dey D, Diaz Zamudio M, Schuhbaeck A, Juarez Orozco LE, Otaki Y, Gransar H, et al. Relationship between quantitative adverse plaque features from coronary computed tomography angiography and downstream impaired myocardial flow reserve by 13N-ammonia positron emission tomography: A pilot study. Circ Cardiovasc Imaging 2015;8:e003255.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Driessen RS, Stuijfzand WJ, Raijmakers PG, Danad I, Min JK, Leipsic JA, et al. Effect of plaque burden and morphology on myocardial blood flow and fractional flow reserve. J Am Col Cardiol 2018;71:499‐509.

    Article  Google Scholar 

  29. Kwiecinski J, Dey D, Cadet S, Lee SE, Otaki Y, Huynh PT, et al. Peri-coronary adipose tissue density is associated with (18)F-sodium fluoride coronary uptake in stable patients with high-risk plaques. JACC Cardiovasc Imaging 2019;12:2000‐10.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kanaji Y, Sugiyama T, Hoshino M, Misawa T, Nagamine T, Yasui Y, et al. Physiological significance of pericoronary inflammation in epicardial functional stenosis and global coronary flow reserve. Sci Rep 2021;11:19026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goeller M, Achenbach S, Cadet S, Kwan AC, Commandeur F, Slomka PJ, et al. Pericoronary adipose tissue computed tomography attenuation and high-risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease. JAMA Cardiol 2018;3:858‐63.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ma R, Ties D, van Assen M, Pelgrim GJ, Sidorenkov G, van Ooijen PMA, et al. Towards reference values of pericoronary adipose tissue attenuation: Impact of coronary artery and tube voltage in coronary computed tomography angiography. Eur Radiol 2020;30:6838‐46.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chatterjee D, Shou BL, Matheson MB, Ostovaneh MR, Rochitte C, Chen MY, et al. Perivascular fat attenuation for predicting adverse cardiac events in stable patients undergoing invasive coronary angiography. J Cardiovasc Comput Tomogr 2022;16:483‐90.

    Article  PubMed  Google Scholar 

  34. Antoniades C, Antonopoulos AS, Deanfield J. Imaging residual inflammatory cardiovascular risk. Eur Heart J 2019;41:748‐58.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Heart, Lung, and Blood Institute, United States 1R01HL148787-01A1 and 1R01HL151266. This work was also supported by a grant from the Dr Miriam and Sheldon G. Adelson Medical Research Foundation. K.K. receives funding support from the Society of Nuclear Medicine and Molecular Imaging Wagner-Torizuka Fellowship grant and the Nihon University School of Medicine Alumni Association Research Grant. E.T. (FS/CRTF/20/24086) is supported by the British Heart Foundation.

Disclosures

Outside of the current work, S.C., P.S., and D.D. received software royalties from Cedars-Sinai Medical Center. D.B, P.S., and D.D. hold a patent (US8885905B2 in USA and WO patent WO2011069120A1, Method and System for Plaque Characterization). P.K. has received research grants from HeartFlow Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damini Dey PhD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 844 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuronuma, K., van Diemen, P.A., Han, D. et al. Relationship between impaired myocardial blood flow by positron emission tomography and low-attenuation plaque burden and pericoronary adipose tissue attenuation from coronary computed tomography: From the prospective PACIFIC trial. J. Nucl. Cardiol. 30, 1558–1569 (2023). https://doi.org/10.1007/s12350-022-03194-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-022-03194-z

Keywords

Navigation