Skip to main content
Log in

2022 ASNC/AAPM/SCCT/SNMMI guideline for the use of CT in hybrid nuclear/CT cardiac imaging

  • Hybrid Imaging Guideline
  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Adapted from Huang et al13

Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33

Abbreviations

AC:

Attenuation correction

CACS:

Coronary artery calcium score

CAD:

Coronary artery disease

CT:

Computerized tomography

DLP:

Dose length product

FDG:

Fluorodeoxyglucose

MPI:

Myocardial perfusion imaging

PET:

Positron emission tomography

RAC:

Radioactive source attenuation correction

RBM:

Radiology benefits manager

SFOV:

Scan field of view

SPECT:

Single photon emission computed tomography

SUV:

Standardized uptake value

TCM:

Tube current modulation

References

  1. Dorbala S, Di Carli MF, Delbeke D, Abbara S, DePuey EG, Dilsizian V. SNMMI/ASNC/SCCT guideline for cardiac SPECT/CT and PET/CT 1.0. J Nucl Med 2013;54:1485‐507.

    Article  Google Scholar 

  2. Corbett JR, Ficaro EP. Clinical review of attenuation-corrected cardiac SPECT. J Nucl Cardiol 1999;6:54‐68.

    Article  CAS  Google Scholar 

  3. Cherry S, Sorenson J, Phelps M. Physics in nuclear medicine. 4th ed. Philadelphia: Elsevier; 2012.

    Google Scholar 

  4. Hendel RC, Corbett JR, Cullom SJ, DePuey EG, Garcia EV, Bateman TM. The value and practice of attenuation correction for myocardial perfusion SPECT imaging: A Joint Position Statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Med 2002;43:273‐80.

    Google Scholar 

  5. Chen Y, An H. Attenuation correction of PET/MR imaging. Magn Reson Imaging Clin N Am 2017;25:245‐55.

    Article  Google Scholar 

  6. Patton JA, Turkington TG. SPECT/CT physical principles and attenuation correction. J Nucl Med Technol 2008;36:1‐10.

    Article  Google Scholar 

  7. Inoue Y, Shirouzu I, Machida T, Yoshizawa Y, Akita F, Minami M, et al. Collimator choice in cardiac SPECT with I-123-labeled tracers. J Nucl Cardiol 2004;11:433‐9.

    Article  Google Scholar 

  8. Könik A, Kikut J, Lew R, Johnson K, King MA. Comparison of methods of acquiring attenuation maps for cardiac SPECT in the presence of respiratory motion. J Nucl Cardiol 2013;20:1093‐107.

    Article  Google Scholar 

  9. Seo Y, Mari C, Hasegawa BH. Technological development and advances in single-photon emission computed tomography/computed tomography. Semin Nucl Med 2008;38:177‐98.

    Article  Google Scholar 

  10. Alessio AM, Kohlmyer S, Branch K, Chen G, Caldwell J, Kinahan P. Cine CT for attenuation correction in cardiac PET/CT. J Nucl Med 2007;48:794‐801.

    Article  Google Scholar 

  11. Di Carli MF, Dorbala S, Meserve J, El Fakhri G, Sitek A, Moore SC. Clinical myocardial perfusion PET/CT. J Nucl Med 2007;48:783‐93.

    Article  Google Scholar 

  12. Genovesi D, Giorgetti A, Gimelli A, Kusch A, D’Aragona Tagliavia I, Casagranda M, et al. Impact of attenuation correction and gated acquisition in SPECT myocardial perfusion imaging: Results of the multicentre SPAG (SPECT Attenuation Correction vs Gated) study. Eur J Nucl Med Mol Imaging 2011;38:1890‐8.

    Article  CAS  Google Scholar 

  13. Huang JY, Huang CK, Yen RF, Wu HY, Tu YK, Cheng MF, et al. Diagnostic performance of attenuation-corrected myocardial perfusion imaging for coronary artery disease: A systematic review and meta-analysis. J Nucl Med 2016;57:1893‐8.

    Article  Google Scholar 

  14. Masood Y, Liu YH, Depuey G, Taillefer R, Araujo LI, Allen S, et al. Clinical validation of SPECT attenuation correction using X-ray computed tomography-derived attenuation maps: Multicenter clinical trial with angiographic correlation. J Nucl Cardiol 2005;12:676‐86.

    Article  Google Scholar 

  15. Sharma P, Patel CD, Karunanithi S, Maharjan S, Malhotra A. Comparative accuracy of CT attenuation-corrected and non-attenuation-corrected SPECT myocardial perfusion imaging. Clin Nucl Med 2012;37:332‐8.

    Article  Google Scholar 

  16. Utsunomiya D, Tomiguchi S, Shiraishi S, Yamada K, Honda T, Kawanaka K, et al. Initial experience with X-ray CT based attenuation correction in myocardial perfusion SPECT imaging using a combined SPECT/CT system. Ann Nucl Med 2005;19:485‐9.

    Article  Google Scholar 

  17. Heller GV, Bateman TM, Johnson LL, Cullom SJ, Case JA, Galt JR, et al. Clinical value of attenuation correction in stress-only Tc-99m sestamibi SPECT imaging. J Nucl Cardiol 2004;11:273‐81.

    Article  Google Scholar 

  18. Thompson RC, Heller GV, Johnson LL, Case JA, Cullom SJ, Garcia EV, et al. Value of attenuation correction on ECG-gated SPECT myocardial perfusion imaging related to body mass index. J Nucl Cardiol 2005;12:195‐202.

    Article  Google Scholar 

  19. Arsanjani R, Xu Y, Hayes SW, Fish M, Lemley M, Gerlach J, et al. Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population. J Nucl Med 2013;54:221‐8.

    Article  Google Scholar 

  20. Wolak A, Slomka PJ, Fish MB, Lorenzo S, Berman DS, Germano G. Quantitative diagnostic performance of myocardial perfusion SPECT with attenuation correction in women. J Nucl Med 2008;49:915‐22.

    Article  Google Scholar 

  21. Gemignani AS, Muhlebach SG, Abbott BG, Roye GD, Harrington DT, Arrighi JA. Stress-only or stress/rest myocardial perfusion imaging in patients undergoing evaluation for bariatric surgery. J Nucl Cardiol 2011;18:886‐92.

    Article  Google Scholar 

  22. Huang R, Li F, Zhao Z, Liu B, Ou X, Tian R, et al. Hybrid SPECT/CT for attenuation correction of stress myocardial perfusion imaging. Clin Nucl Med 2011;36:344‐9.

    Article  Google Scholar 

  23. Blaha MJ, Mortensen MB, Kianoush S, Tota-Maharaj R, Cainzos-Achirica M. Coronary artery calcium scoring: Is it time for a change in methodology? JACC Cardiovasc Imaging 2017;10:923‐37.

    Article  Google Scholar 

  24. Mylonas I, Kazmi M, Fuller L, deKemp RA, Yam Y, Chen L, et al. Measuring coronary artery calcification using positron emission tomography–computed tomography attenuation correction images. Eur Heart J Cardiovasc Imaging 2012;13:786‐92.

    Article  Google Scholar 

  25. Einstein AJ, Johnson LL, Bokhari S, Son J, Thompson RC, Bateman TM, et al. Agreement of visual estimation of coronary artery calcium from low-dose CT attenuation correction scans in hybrid PET/CT and SPECT/CT with standard Agatston score. J Am Coll Cardiol 2010;56:1914‐21.

    Article  Google Scholar 

  26. Trpkov C, Savtchenko A, Liang Z, Feng P, Southern DA, Wilton SB, et al. Visually estimated coronary artery calcium score improves SPECT–MPI risk stratification. Int J Cardiol Heart Vasc 2021;35:100827.

    Google Scholar 

  27. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 1995;92:2157‐62.

    Article  CAS  Google Scholar 

  28. Budoff MJ, Young R, Burke G, Jeffrey Carr J, Detrano RC, Folsom AR, et al. Ten-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: The multi-ethnic study of atherosclerosis (MESA). Eur Heart J 2018;39:2401‐8.

    Article  CAS  Google Scholar 

  29. Villines TC, Hulten EA, Shaw LJ, Goyal M, Dunning A, Achenbach S, et al. Prevalence and severity of coronary artery disease and adverse events among symptomatic patients with coronary artery calcification scores of zero undergoing coronary computed tomography angiography: Results from the CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter) registry. J Am Coll Cardiol 2011;58:2533‐40.

    Article  Google Scholar 

  30. Sarwar A, Shaw LJ, Shapiro MD, Blankstein R, Hoffmann U, Cury RC, et al. Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc Imaging 2009;2:675‐88.

    Article  Google Scholar 

  31. Small GR, Yam Y, Chen L, Ahmed O, Al-Mallah M, Berman DS, et al. Prognostic assessment of coronary artery bypass patients with 64-slice computed tomography angiography: Anatomical information is incremental to clinical risk prediction. J Am Coll Cardiol 2011;58:2389‐95.

    Article  Google Scholar 

  32. Nabi F, Chang SM, Pratt CM, Paranilam J, Peterson LE, Frias ME, et al. Coronary artery calcium scoring in the emergency department: Identifying which patients with chest pain can be safely discharged home. Ann Emerg Med 2010;56:220‐9.

    Article  Google Scholar 

  33. Chaikriangkrai K, Palamaner Subash Shantha G, Jhun HY, Ungprasert P, Sigurdsson G, Nabi F, et al. Prognostic value of coronary artery calcium score in acute chest pain patients without known coronary artery disease: Systematic review and meta-analysis. Ann Emerg Med 2016;68:659‐70.

    Article  Google Scholar 

  34. Uretsky S, Cohen R, Argulian E, Balasundaram K, Supariwala A, Subero M, et al. Combining stress-only myocardial perfusion imaging with coronary calcium scanning as a new paradigm for initial patient work-up: An exploratory analysis. J Nucl Cardiol 2015;22:89‐97.

    Article  Google Scholar 

  35. He ZX, Hedrick TD, Pratt CM, Verani MS, Aquino V, Roberts R, et al. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation 2000;101:244‐51.

    Article  CAS  Google Scholar 

  36. Thompson RC, McGhie AI, Moser KW, O’Keefe JH Jr, Stevens TL, House J, et al. Clinical utility of coronary calcium scoring after nonischemic myocardial perfusion imaging. J Nucl Cardiol 2005;12:392‐400.

    Article  Google Scholar 

  37. Berman DS, Wong ND, Gransar H, Miranda-Peats R, Dahlbeck J, Hayes SW, et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 2004;44:923‐30.

    Article  CAS  Google Scholar 

  38. Engbers EM, Timmer JR, Ottervanger JP, Mouden M, Knollema S, Jager PL. Prognostic value of coronary artery calcium scoring in addition to single-photon emission computed tomographic myocardial perfusion imaging in symptomatic patients. Circ Cardiovasc Imaging 2016. https://doi.org/10.1161/circimaging.115.003966.

    Article  Google Scholar 

  39. Bavishi C, Argulian E, Chatterjee S, Rozanski A. CACS and the frequency of stress-induced myocardial ischemia during MPI: A meta-analysis. JACC Cardiovasc Imaging 2016;9:580‐9.

    Article  Google Scholar 

  40. Chang SM, Nabi F, Xu J, Peterson LE, Achari A, Pratt CM, et al. The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk. J Am Coll Cardiol 2009;54:1872‐82.

    Article  Google Scholar 

  41. Schepis T, Gaemperli O, Koepfli P, Namdar M, Valenta I, Scheffel H, et al. Added value of coronary artery calcium score as an adjunct to gated SPECT for the evaluation of coronary artery disease in an intermediate-risk population. J Nucl Med 2007;48:1424‐30.

    Article  Google Scholar 

  42. Naya M, Murthy VL, Foster CR, Gaber M, Klein J, Hainer J, et al. Prognostic interplay of coronary artery calcification and underlying vascular dysfunction in patients with suspected coronary artery disease. J Am Coll Cardiol 2013;61:2098‐106.

    Article  CAS  Google Scholar 

  43. Schenker MP, Dorbala S, Hong EC, Rybicki FJ, Hachamovitch R, Kwong RY, et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: A combined positron emission tomography/computed tomography study. Circulation 2008;117:1693‐700.

    Article  Google Scholar 

  44. Aljizeeri A, Ahmed Ahmed I, Alfaris Mousa A, Ahmed D, Farea J, Elneama A, et al. Myocardial flow reserve and coronary calcification in prognosis of patients with suspected coronary artery disease. JACC Cardiovasc Imaging 2021;14:2443‐52. https://doi.org/10.1016/j.jcmg.2021.01.024.

    Article  Google Scholar 

  45. Pieszko K, Shanbhag AD, Lemley M, Hyun M, Van Kriekinge S, Otaki Y, et al. Reproducibility of quantitative coronary calcium scoring from PET/CT attenuation maps: Comparison to ECG-gated CT scans. Eur J Nucl Med Mol Imaging 2022. https://doi.org/10.1007/s00259-022-05866-x.

    Article  Google Scholar 

  46. Patel KK, Peri-Okonny PA, Qarajeh R, Patel FS, Sperry BW, McGhie AI, et al. Prognostic relationship between coronary artery calcium score, perfusion defects, and myocardial blood flow reserve in patients with suspected coronary artery disease. Circ Cardiovasc Imaging 2022;15:e012599.

    Article  Google Scholar 

  47. Rozanski A, Gransar H, Shaw LJ, Kim J, Miranda-Peats L, Wong ND, et al. Impact of coronary artery calcium scanning on coronary risk factors and downstream testing the EISNER (Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research) prospective randomized trial. J Am Coll Cardiol 2011;57:1622‐32.

    Article  CAS  Google Scholar 

  48. Taylor AJ, Bindeman J, Feuerstein I, Le T, Bauer K, Byrd C, et al. Community-based provision of statin and aspirin after the detection of coronary artery calcium within a community-based screening cohort. J Am Coll Cardiol 2008;51:1337‐41.

    Article  Google Scholar 

  49. Kalia NK, Miller LG, Nasir K, Blumenthal RS, Agrawal N, Budoff MJ. Visualizing coronary calcium is associated with improvements in adherence to statin therapy. Atherosclerosis 2006;185:394‐9.

    Article  CAS  Google Scholar 

  50. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2019;73:3168‐209.

    Article  Google Scholar 

  51. Jiménez-Ballvé A, Pérez-Castejón MJ, Delgado-Bolton RC, Sánchez-Enrique C, Vilacosta I, Vivas D, et al. Assessment of the diagnostic accuracy of (18)F-FDG PET/CT in prosthetic infective endocarditis and cardiac implantable electronic device infection: Comparison of different interpretation criteria. Eur J Nucl Med Mol Imaging 2016;43:2401‐12.

    Article  Google Scholar 

  52. Chareonthaitawee P, Beanlands RS, Chen W, Dorbala S, Miller EJ, Murthy VL, et al. Joint SNMMI–ASNC Expert Consensus Document on the role of (18)F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Med 2017;58:1341‐53.

    Article  CAS  Google Scholar 

  53. Chen W, Kim J, Molchanova-Cook OP, Dilsizian V. The Potential of FDG PET/CT for early diagnosis of cardiac device and prosthetic valve infection before morphologic damages ensue. Curr Cardiol Rep 2014;16:459.

    Article  Google Scholar 

  54. Bailly M, Thibault F, Courtehoux M, Metrard G, Ribeiro MJ. Impact of attenuation correction for CZT-SPECT measurement of myocardial blood flow. J Nucl Cardiol 2021;28:2560‐8.

    Article  Google Scholar 

  55. Hanna M, Ruberg FL, Maurer MS, Dispenzieri A, Dorbala S, Falk RH, et al. Cardiac scintigraphy with technetium-99m-labeled bone-seeking tracers for suspected amyloidosis: JACC review topic of the week. J Am Coll Cardiol 2020;75:2851‐62.

    Article  CAS  Google Scholar 

  56. Dorbala S, Park MA, Cuddy S, Singh V, Sullivan K, Kim S, et al. Absolute quantitation of cardiac (99m)Tc-pyrophosphate using cadmium–zinc–telluride-based SPECT/CT. J Nucl Med 2021;62:716‐22.

    Article  CAS  Google Scholar 

  57. Miller EJ MJ, Abidov A, Bullock-Palmer RP, Hage FG, Malhotra S, et al. Hybrid nuclear cardiology/computed tomography imaging practices, capabilities, and training in 2018: Results of the ASNC Hybrid Imaging Survey; 2018. Survery data on file

  58. Tonkopi E, Ross AA. Assessment of effective dose from cone beam CT imaging in SPECT/CT examination in comparison with other modalities. Radiat Prot Dosim 2016;172:438‐42.

    Article  CAS  Google Scholar 

  59. Fahey FH, Palmer MR, Strauss KJ, Zimmerman RE, Badawi RD, Treves ST. Dosimetry and adequacy of CT-based attenuation correction for pediatric PET: Phantom study. Radiology 2007;243:96‐104.

    Article  Google Scholar 

  60. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15:827‐32.

    Article  CAS  Google Scholar 

  61. Willemink MJ, van der Werf NR, Nieman K, Greuter MJW, Koweek LM, Fleischmann D. Coronary artery calcium: A technical argument for a new scoring method. J Cardiovasc Comput Tomogr 2019;13:347‐52.

    Article  Google Scholar 

  62. de Juan R, Seifert B, Berthold T, von Schulthess GK, Goerres GW. Clinical evaluation of a breathing protocol for PET/CT. Eur Radiol 2004;14:1118‐23.

    Article  Google Scholar 

  63. Glatting G, Wuchenauer M, Reske SN. Iterative reconstruction for attenuation correction in positron emission tomography: Maximum likelihood for transmission and blank scan. Med Phys 1999;26:1838‐42.

    Article  CAS  Google Scholar 

  64. Delbeke D, Martin WH, Patton JA, Sandler MP. Value of iterative reconstruction, attenuation correction, and image fusion in the interpretation of FDG PET images with an integrated dual-head coincidence camera and X-ray-based attenuation maps. Radiology 2001;218:163‐71.

    Article  CAS  Google Scholar 

  65. Hecht HS, de Siqueira ME, Cham M, Yip R, Narula J, Henschke C, et al. Low- vs. standard-dose coronary artery calcium scanning. Eur Heart J Cardiovasc Imaging 2015;16:358‐63.

    Article  Google Scholar 

  66. Kurata A, Dharampal A, Dedic A, de Feyter PJ, Krestin GP, Dijkshoorn ML, et al. Impact of iterative reconstruction on CT coronary calcium quantification. Eur Radiol 2013;23:3246‐52.

    Article  Google Scholar 

  67. Choi AD, Leifer ES, Yu J, Shanbhag SM, Bronson K, Arai AE, et al. Prospective evaluation of the influence of iterative reconstruction on the reproducibility of coronary calcium quantification in reduced radiation dose 320 detector row CT. J Cardiovasc Comput Tomogr 2016;10:359‐63.

    Article  Google Scholar 

  68. Luhur R, Schuijf JD, Mews J, Blobel J, Hamm B, Lembcke A. Accuracy of coronary artery calcium scoring with tube current reduction by 75%, using an adaptive iterative reconstruction algorithm. Br J Radiol 2018;91:20170678.

    Article  Google Scholar 

  69. Blobel J, Mews J, Goatman KA, Schuijf JD, Overlaet W. Calibration of coronary calcium scores determined using iterative image reconstruction (AIDR 3D) at 120, 100, and 80 kVp. Med Phys 2016;43:1921.

    Article  CAS  Google Scholar 

  70. Xia T, Alessio AM, De Man B, Manjeshwar R, Asma E, Kinahan PE. Ultra-low dose CT attenuation correction for PET/CT. Phys Med Biol 2012;57:309‐28.

    Article  Google Scholar 

  71. Case JA. Minimizing the radiation dose of CT attenuation correction while improving image quality: The case for innovation. J Nucl Cardiol 2016;23:1080‐5.

    Article  Google Scholar 

  72. American College of Radiology. ACR-AAPM-SIIM-SPR practice parameter for digital radiography. American College of Radiology; 2017.

  73. Hill DL, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol 2001;46:R1-45.

    Article  CAS  Google Scholar 

  74. Hutton BF, Braun M, Thurfjell L, Lau DY. Image registration: An essential tool for nuclear medicine. Eur J Nucl Med Mol Imaging 2002;29:559‐77.

    Article  CAS  Google Scholar 

  75. Loats H. CT and SPECT image registration and fusion for spatial localization of metastatic processes using radiolabeled monoclonals. J Nucl Med 1993;34:562‐6.

    CAS  Google Scholar 

  76. Piccinelli M, Cooke DC, Garcia EV. Multimodality image fusion for coronary artery disease detection: Concepts and latest developments. Ann Nucl Cardiol 2018;4:74‐8.

    Article  Google Scholar 

  77. O’Connor MK, Kemp BJ. Single-photon emission computed tomography/computed tomography: basic instrumentation and innovations. Semin Nucl Med 2006;36:258‐66.

    Article  Google Scholar 

  78. Tsui BM, Gullberg GT, Edgerton ER, Ballard JG, Perry JR, McCartney WH, et al. Correction of nonuniform attenuation in cardiac SPECT imaging. J Nucl Med 1989;30:497‐507.

    CAS  Google Scholar 

  79. Piccinelli M, Santana C, Sirineni GKR, Folks RD, Cooke CD, Arepalli CD, et al. Diagnostic performance of the quantification of myocardium at risk from MPI SPECT/CTA 2G fusion for detecting obstructive coronary disease: A multicenter trial. J Nucl Cardiol 2018;25:1376‐86.

    Article  Google Scholar 

  80. Förster GJ, Laumann C, Nickel O, Kann P, Rieker O, Bartenstein P. SPECT/CT image co-registration in the abdomen with a simple and cost-effective tool. Eur J Nucl Med Mol Imaging 2003;30:32‐9.

    Article  Google Scholar 

  81. Pretorius PH, Johnson KL, Dahlberg ST, King MA. Investigation of the physical effects of respiratory motion compensation in a large population of patients undergoing Tc-99m cardiac perfusion SPECT/CT stress imaging. J Nucl Cardiol 2020;27:80‐95.

    Article  Google Scholar 

  82. Yang J, Shi L, Wang R, Liu C, Gullberg G, Seo Y. CT-less attenuation correction in image space using deep learning for dedicated cardiac SPECT: A feasibility study. J Nucl Med 2020;61:223.

    Google Scholar 

  83. Hagio T, Poitrasson-Rivière A, Moody JB, Renaud JM, Arida-Moody L, Shah RV, et al. “Virtual” attenuation correction: Improving stress myocardial perfusion SPECT imaging using deep learning. Eur J Nucl Med Mol Imaging 2022;49:3140‐9.

    Article  Google Scholar 

  84. Fukui R, Sakimoto S, Fujii S, et al. Suggestion for dose reduction of the PET/CT imaging by using the generated pseudo-CT image base on the deep learning. RSNA 2020 Poster. American College of Radiology; 2020.

  85. Gaemperli O, Schepis T, Kalff V, Namdar M, Valenta I, Stefani L, et al. Validation of a new cardiac image fusion software for three-dimensional integration of myocardial perfusion SPECT and stand-alone 64-slice CT angiography. Eur J Nucl Med Mol Imaging 2007;34:1097‐106.

    Article  Google Scholar 

  86. Gaemperli O, Bengel FM, Kaufmann PA. Cardiac hybrid imaging. Eur Heart J 2011;32:2100‐8.

    Article  Google Scholar 

  87. Dorbala S, Ananthasubramaniam K, Armstrong IS, Chareonthaitawee P, DePuey EG, Einstein AJ, et al. Single photon emission computed tomography (SPECT) myocardial perfusion imaging guidelines: Instrumentation, acquisition, processing, and interpretation. J Nucl Cardiol 2018;25:1784‐846.

    Article  Google Scholar 

  88. Slomka PJ, Diaz-Zamudio M, Dey D, Motwani M, Brodov Y, Choi D, et al. Automatic registration of misaligned CT attenuation correction maps in Rb-82 PET/CT improves detection of angiographically significant coronary artery disease. J Nucl Cardiol 2015;22:1285‐95.

    Article  Google Scholar 

  89. Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: A definitive analysis of causes, consequences, and corrections. J Nucl Med 2007;48:1112.

    Article  Google Scholar 

  90. Loghin C, Sdringola S, Gould KL. Common artifacts in PET myocardial perfusion images due to attenuation-emission misregistration: Clinical significance, causes, and solutions. J Nucl Med 2004;45:1029‐39.

    Google Scholar 

  91. Rajaram M, Tahari AK, Lee AH, Lodge MA, Tsui B, Nekolla S, et al. Cardiac PET/CT misregistration causes significant changes in estimated myocardial blood flow. J Nucl Med 2013;54:50‐4.

    Article  Google Scholar 

  92. Goetze S, Brown TL, Lavely WC, Zhang Z, Bengel FM. Attenuation correction in myocardial perfusion SPECT/CT: Effects of misregistration and value of reregistration. J Nucl Med 2007;48:1090‐5.

    Article  Google Scholar 

  93. Burrell S, MacDonald A. Artifacts and pitfalls in myocardial perfusion imaging. J Nucl Med Technol 2006;34:193‐211.

    Google Scholar 

  94. Wosnitzer B, Gadiraju R, Depuey G. The truncation artifact. J Nucl Cardiol 2011;18:187‐91.

    Article  Google Scholar 

  95. Tsuboi K, Onoguchi M, Sugimoto M. The effect of truncation artifact to the myocardium on myocardial perfusion SPECT: Phantom analysis. J Nucl Med 2015;56:2615.

    Google Scholar 

  96. Harnish R, Prevrhal S, Alavi A, Zaidi H, Lang TF. The effect of metal artefact reduction on CT-based attenuation correction for PET imaging in the vicinity of metallic hip implants: A phantom study. Ann Nucl Med 2014;28:540‐50.

    Article  CAS  Google Scholar 

  97. Kamel EM, Burger C, Buck A, von Schulthess GK, Goerres GW. Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. Eur Radiol 2003;13:724‐8.

    Article  Google Scholar 

  98. Beyer T, Antoch G, Müller S, Egelhof T, Freudenberg LS, Debatin J, et al. Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med 2004;45:25S-35S.

    Google Scholar 

  99. Fuchs TA, Sah BR, Stehli J, Bull S, Dougoud S, Huellner MW, et al. Attenuation correction maps for SPECT myocardial perfusion imaging from contrast-enhanced coronary CT angiography: Gemstone spectral imaging with single-source dual energy and material decomposition. J Nucl Med 2013;54:2077‐80.

    Article  Google Scholar 

  100. Berthelsen AK, Holm S, Loft A, Klausen TL, Andersen F, Højgaard L. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients. Eur J Nucl Med Mol Imaging 2005;32:1167‐75.

    Article  CAS  Google Scholar 

  101. Aschoff P, Plathow C, Beyer T, Lichy MP, Erb G, Öksüz MÖ, et al. Multiphase contrast-enhanced CT with highly concentrated contrast agent can be used for PET attenuation correction in integrated PET/CT imaging. Eur J Nucl Med Mol Imaging 2012;39:316‐25.

    Article  CAS  Google Scholar 

  102. Bai C, Conwell R, Old R, Maddahi J. Can a single CT scan be used for both stress and rest attenuation correction in cardiac SPECT? J Nucl Med 2010;51:473.

    Google Scholar 

  103. Ahlman MA, Nietert PJ, Wahlquist AE, Serguson JM, Berry MW, Suranyi P, et al. A single CT for attenuation correction of both rest and stress SPECT myocardial perfusion imaging: A retrospective feasibility study. Int J Clin Exp Med 2014;7:148‐55.

    Google Scholar 

  104. Wells RG, Trottier M, Premaratne M, Vanderwerf K, Ruddy TD. Single CT for attenuation correction of rest/stress cardiac SPECT perfusion imaging. J Nucl Cardiol 2018;25:616‐24.

    Article  Google Scholar 

  105. Fukami M, Tamura K, Nakamura Y, Nakatsukasa S, Sasaki M. Evaluating the effectiveness of a single CT method for attenuation correction in stress–rest myocardial perfusion imaging with thallium-201 chloride SPECT. Radiol Phys Technol 2020;13:20‐6.

    Article  Google Scholar 

  106. Kaster TS, Dwivedi G, Susser L, Renaud JM, Beanlands RS, Chow BJ, et al. Single low-dose CT scan optimized for rest–stress PET attenuation correction and quantification of coronary artery calcium. J Nucl Cardiol 2015;22:419‐28.

    Article  Google Scholar 

  107. Ghafarian P, Aghamiri SM, Ay MR, Fallahi B, Rahmim A, Schindler TH, et al. Coronary calcium score scan-based attenuation correction in cardiovascular PET imaging. Nucl Med Commun 2010;31:780‐7.

    Article  Google Scholar 

  108. Schepis T, Gaemperli O, Koepfli P, Rüegg C, Burger C, Leschka S, et al. Use of coronary calcium score scans from stand-alone multislice computed tomography for attenuation correction of myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 2007;34:11‐9.

    Article  Google Scholar 

  109. Port S. Incidental findings on hybrid SPECT–CT and PET–CT scanners: Is it time for new training and reporting guidelines? J Nucl Cardiol 2019;26:1694‐6.

    Article  Google Scholar 

  110. American College of Radiology. Interpreting physician: CT (Revised 12-12-19). American College of Radiology; 2019.

  111. Lu MT, Douglas PS, Udelson JE, Adami E, Ghoshhajra BB, Picard MH, et al. Safety of coronary CT angiography and functional testing for stable chest pain in the PROMISE trial: A randomized comparison of test complications, incidental findings, and radiation dose. J Cardiovasc Comput Tomogr 2017;11:373‐82.

    Article  CAS  Google Scholar 

  112. Lee CI, Tsai EB, Sigal BM, Plevritis SK, Garber AM, Rubin GD. Incidental extracardiac findings at coronary CT: Clinical and economic impact. Am J Roentgenol 2010;194:1531‐8.

    Article  Google Scholar 

  113. Goldman LH, Lerer R, Shabrang C, Travin MI, Levsky JM. Clinical significance of incidental findings on coronary CT angiography: Insights from a randomized controlled trial. J Nucl Cardiol 2020;27:2306‐15.

    Article  Google Scholar 

  114. Kay FU, Canan A, Abbara S. Common incidental findings on cardiac CT: A systematic review. Curr Cardiovasc Imaging Rep 2019;12:21.

    Article  Google Scholar 

  115. Iagaru A. Incidental extra-cardiac findings on (13)NH(3) myocardial perfusion PET/CT. J Nucl Cardiol 2017;24:1869‐70.

    Article  Google Scholar 

  116. Lee JC, Delaney FT. Prevalence and clinical significance of incidental findings on CT attenuation correction for myocardial perfusion imaging. J Nucl Cardiol 2022;29:1813‐22. https://doi.org/10.1007/s12350-020-02499-1.

    Article  Google Scholar 

  117. Kan H, van der Zant FM, Wondergem M, Knol RJJ. Incidental extra-cardiac findings on 13N-ammonia myocardial perfusion PET/CT. J Nucl Cardiol 2017;24:1860‐8.

    Article  CAS  Google Scholar 

  118. Coward J, Lawson R, Kane T, Elias M, Howes A, Birchall J, et al. Multi-centre analysis of incidental findings on low-resolution CT attenuation correction images. Br J Radiol 2014;87:20130701.

    Article  CAS  Google Scholar 

  119. Qureshi WT, Alirhayim Z, Khalid F, Al-Mallah MH. Prognostic value of extracardiac incidental findings on attenuation correction cardiac computed tomography. J Nucl Cardiol 2016;23:1266‐74.

    Article  Google Scholar 

  120. He BJ, Malm BJ, Carino M, Sadeghi MM. Prevalence and variability in reporting of clinically actionable incidental findings on attenuation-correction CT scans in a veteran population. J Nucl Cardiol 2019;26:1688‐93.

    Article  Google Scholar 

  121. MacMahon H, Naidich DP, Goo JM, Lee KS, Leung ANC, Mayo JR, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the Fleischner Society 2017. Radiology 2017;284:228‐43.

    Article  Google Scholar 

  122. Nuclear Medicine Technology Certification Board, Inc. Computed tomography exam information. Section 1: Eligibility requirements. Nuclear Medicine Technology Certification Board, Inc.; 2021.

  123. Nuclear Medicine Technology Certification Board, Inc. PET exam application. Nuclear Medicine Technology Certification Board, Inc.; 2021.

  124. AART Board. Clinical experience requirements. Computed tomography. AART Board Approved 2017. AART Board; 2017.

  125. Duvernoy CS, Ficaro EP, Karabajakian MZ, Rose PA, Corbett JR. Improved detection of left main coronary artery disease with attenuation-corrected SPECT. J Nucl Cardiol 2000;7:639‐48.

    Article  CAS  Google Scholar 

  126. Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging: Similar patient mortality with reduced radiation exposure. J Am Coll Cardiol 2010;55:221‐30.

    Article  Google Scholar 

  127. Mathur S, Heller GV, Bateman TM, Ruffin R, Yekta A, Katten D, et al. Clinical value of stress-only Tc-99m SPECT imaging: Importance of attenuation correction. J Nucl Cardiol 2013;20:27‐37.

    Article  Google Scholar 

  128. Takx RA, Išgum I, Willemink MJ, van der Graaf Y, de Koning HJ, Vliegenthart R, et al. Quantification of coronary artery calcium in nongated CT to predict cardiovascular events in male lung cancer screening participants: Results of the NELSON study. J Cardiovasc Comput Tomogr 2015;9:50‐7.

    Article  Google Scholar 

  129. Bybee KA, Lee J, Markiewicz R, Longmore R, McGhie AI, O’Keefe JH, et al. Diagnostic and clinical benefit of combined coronary calcium and perfusion assessment in patients undergoing PET/CT myocardial perfusion stress imaging. J Nucl Cardiol 2010;17:188‐96.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers of this document for their input, which has significantly improved the quality of this document, including Ian Armstrong, PhD, MIPEM; Rob S. B. Beanlands, MD, FRCP©, MASNC; Junguo Bian, PhD; David C. Brandon, MD; Renée P. Bullock-Palmer, MD, FACC, FASNC, FASE, FSCCT; Robert A. deKemp, PhD, FASNC; Dominique Delbeke, MD, PhD; Sharmila Dorbala, MD, MPH, MASNC; William D. Erwin, MS, FAAPM; Cristina Fuss, MD, FSCCT, FNASCI; Sara Johnson, MEd, CNMT, NMTCB(RS); Tinsu Pan, PhD, FAAPM; Leslee Shaw, PhD, FACC, MASNC.

Disclosures

Dr. Mouaz H. Al-Mallah has served as a consultant to Pfizer, Philips, and Jubilant; he has received grant support from Siemens. Dr. Timothy M. Bateman holds intellectual property rights in and receives royalties from Cardiovascular Imaging Technologies; he has served as a consultant to AIM, AstraZeneca, Curium, and GE Healthcare; and he has received grant support from Bracco, JDI Solutions, and GE Healthcare. Dr. Kelley R. Branch has served as a consultant to Amgen, Bayer, Hanmi Pharmaceutical, Janssen, Kestra Medical Technologies, and Sana Biotechnology; he has received grant support from Bayer, Eli Lilly, Kestra Medical Technologies, and Sanofi. Dr. Edward J. Miller has served as a consultant to Bracco, Pfizer, GE Healthcare, and Alnylam; he has received grant support from Bracco, Eidos, Alnylam, and Pfizer. Dr. Venkatesh L. Murthy has served as a consultant to Ionetix and Curium; he has received honoraria from Ionetix and Siemens; he has received grant support from Siemens; serves on the advisory board to Ionetix and Curium; and he has stock interest in Ionetix, GE Healthcare, and Cardinal Health. Dr. Koen Nieman has served as a consultant to Siemens Medical Solutions; his institution has received grant support from Siemens Healthineers, Bayer, and HeartFlow; he has received grant support from the National Institute of Health; he serves as an independent contractor for Novartis; and has stock interest in Lumen Therapeutics. Dr. Andrew J. Einstein served as a consultant to W. L. Gore and Associates; his institution has received grant support from GE Healthcare and W. L. Gore and Associates; and he serves on the speakers’ bureau for Ionetix. Dr. John J. Mahmarian served as a consultant to Astellas USA and he serves on the speakers’ bureau for Astellas USA. Victoria Anderson (ASNC staff) has stock interest in Abbott Labs and AbbVie, Inc.

The following contributors have nothing relevant to disclose: Andrew Crean, BSc BM MRCP MSc; Eric L. Gingold, PhD; Sarah E. McKenney, PhD; Randall C. Thompson, MD, MASNC; Todd C. Villines, MD, FACC, FAHA, MSCCT; Michael V. Yester, PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouaz H. Al-Mallah MD, MSc, FASNC (chair).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is published in the Journal of Nuclear Cardiology. This document was approved for publication by the governing body of the American Society of Nuclear Cardiology (ASNC) and was endorsed by the American Association of Physicists in Medicine (AAPM), the Society of Cardiovascular Computed Tomography (SCCT), and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) in August 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mallah, M.H., Bateman, T.M., Branch, K.R. et al. 2022 ASNC/AAPM/SCCT/SNMMI guideline for the use of CT in hybrid nuclear/CT cardiac imaging. J. Nucl. Cardiol. 29, 3491–3535 (2022). https://doi.org/10.1007/s12350-022-03089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-022-03089-z

Navigation