Skip to main content
Log in

Diagnostic and clinical benefit of combined coronary calcium and perfusion assessment in patients undergoing PET/CT myocardial perfusion stress imaging

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

A limitation of stress myocardial perfusion imaging (MPI) is the inability to detect non-obstructive coronary artery disease (CAD). One advantage of MPI with a hybrid CT device is the ability to obtain same-setting measurement of the coronary artery calcium score (CACS).

Methods and Results

Utilizing our single-center nuclear database, we identified 760 consecutive patients with: (1) no CAD history; (2) a normal clinically indicated Rb-82 PET/CT stress perfusion study; and (3) a same-setting CAC scan. 487 of 760 patients (64.1%) had subclinical CAD based on an abnormal CACS. Of those with CAC, the CACS was >100, >400, and >1000 in 47.0%, 22.4%, and 8.4% of patients, respectively. Less than half of the patients with CAC were receiving aspirin or statin medications prior to PET/CT imaging. Patients with CAC were more likely to be initiated or optimized on proven medical therapy for CAD immediately following PET/CT MPI compared to those without CAC.

Conclusions

Subclinical CAD is common in patients without known CAD and normal myocardial perfusion assessed by hybrid PET/CT imaging. Identification of CAC influences subsequent physician prescribing patterns such that those with CAC are more likely to be treated with proven medical therapy for the treatment of CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Husmann L, Wiegand M, Valenta I, Gaemperli O, Schepis T, Siegrist PT, et al. Diagnostic accuracy of myocardial perfusion imaging with single photon emission computed tomography and positron emission tomography: A comparison with coronary angiography. Int J Cardiovasc Imaging 2008;29:191-7.

    Google Scholar 

  2. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: Comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006;13:24-33.

    Article  PubMed  Google Scholar 

  3. Haberl R, Becker A, Leber A, Knez A, Becker C, Lang C, et al. Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: Results of 1,764 patients. J Am Coll Cardiol 2001;37:451-7.

    Article  CAS  PubMed  Google Scholar 

  4. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area: A histopathologic correlative study. Circulation 1995;92:2157-62.

    CAS  PubMed  Google Scholar 

  5. Rumberger JA, Sheedy PF, Breen JF, Schwartz RS. Electron-beam computer tomographic calcium score cut-points and severity of association angiographic lumen stenosis. J Am Coll Cardiol 1997;29:1542-8.

    Article  CAS  PubMed  Google Scholar 

  6. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 2003;28:826-33.

    Article  Google Scholar 

  7. Raggi P, Callister TQ, Cooil B, He ZX, Lippolis NJ, Russo DJ, et al. Identification of patients at increased risk of first unheralded acute myocardial infarction by electron beam computed tomography. Circulation 2000;101:850-5.

    CAS  PubMed  Google Scholar 

  8. He ZX, Hedrick TD, Pratt CM, Verani MS, Aquino V, Roberts R, et al. Severity of coronary artery calcification by electron-beam computed tomography predicts silent myocardial ischemia. Circulation 2000;101:244-51.

    CAS  PubMed  Google Scholar 

  9. Arad Y, Roth M, Newstein D, Newstein D, Guerci AD. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: The St. Francis Heart Study. J Am Coll Cardiol 2005;46:158-65.

    Article  CAS  PubMed  Google Scholar 

  10. Wayhs R, Zellinger A, Raggi P. High calcium scores pose an extremely elevated risk for hard events. J Am Coll Cardiol 2002;39:225-30.

    Article  PubMed  Google Scholar 

  11. Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol 2004;43:1663-9.

    Article  CAS  PubMed  Google Scholar 

  12. Qu W, Le TT, Azen SP, Xiang M, Wong ND, Doherty TM, et al. Value of coronary artery calcium scanning with computed tomography for predicting coronary heart disease in diabetic subjects. Diabetes Care 2003;26:905-10.

    Article  PubMed  Google Scholar 

  13. Berman DS, Wong ND, Gransar H, Miranda-Peats R, Dahlbeck J, Hayes SW, et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 2004;44:923-30.

    Article  CAS  PubMed  Google Scholar 

  14. Budoff MJ, Ehrlich J, Hecht HS, Rumberger JA. Use of coronary calcification scores to predict coronary heart disease. JAMA 2004;291:1832.

    Article  CAS  PubMed  Google Scholar 

  15. Moser KW, O’Keefe JH, Bateman TM, McGhie AI. Coronary calcium screening in asymptomatic patients as a guide to risk factor modification and stress myocardial perfusion imaging. J Nucl Cardiol 2003;10:590-8.

    Article  PubMed  Google Scholar 

  16. Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 2004;291:210-5.

    Article  CAS  PubMed  Google Scholar 

  17. Taylor AJ, Bindeman J, Feuerstein I, Cao F, Brazaitis M, O’Malley PG. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors. J Am Coll Cardiol 2005;46:807-14.

    Article  CAS  PubMed  Google Scholar 

  18. Schmermund A, Denktas AE, Rumberger JA, Christian TF, Sheedy PF II, Bailey KR, et al. Independent and incremental value of coronary artery calcium for predicting the extent of angiographic coronary artery disease: Comparison with cardiac risk factors and radionuclide perfusion imaging. J Am Coll Cardiol 1999;34:777-86.

    Article  CAS  PubMed  Google Scholar 

  19. Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH, et al. Long-term prognosis associated with coronary calcification observations from a registry of 25,253 patients. J Am Coll Cardiol 2007;49:1860-70.

    Article  PubMed  Google Scholar 

  20. Wong ND, Sciammarella MG, Polk D, Gallagher A, Miranda-Peats L, Whitcomb B, et al. The metabolic syndrome, diabetes and subclinical atherosclerosis assessed by coronary calcium. J Am Coll Cardiol 2003;41:1547-53.

    Article  CAS  PubMed  Google Scholar 

  21. Kondos GT, Hoff JA, Sevrukov A, Daviglus ML, Garside DB, Devries SS, et al. Electron-beam tomography coronary artery calcium and cardiac events: A 37-month follow-up of 5,635 initially asymptomatic low-to intermediate-risk adults. Circulation 2003;107:2571-6.

    Article  PubMed  Google Scholar 

  22. Keelan PC, Bielak LF, Ashai K, Jamjoum LS, Denktas AE, Rumberger JA, et al. Long-term prognostic value of coronary calcification detected by electron-beam computed tomography in patients undergoing coronary angiography. Circulation 2001;104:412-22.

    Article  CAS  PubMed  Google Scholar 

  23. Raggi P, Cooli B, Callister TQ. Use of electron-beam tomography data to develop models for prediction of hard coronary events. Am Heart J 2001;141:375-82.

    Article  CAS  PubMed  Google Scholar 

  24. O’Rourke RA, Brundage BH, Froelicher VF, Greenland P, Grundy SM, Hachamovitch R, et al. American College of Cardiology/American Heart Association Expert Consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. Circulation 2000;102:126-40.

    PubMed  Google Scholar 

  25. Thompson RC, McGhie AI, Moser KW, O’Keefe JH, Stevens TL, House J, et al. Clinical utility of coronary calcium scoring after nonischemic myocardial perfusion imaging. J Nucl Cardiol 2005;12:392-400.

    Article  PubMed  Google Scholar 

  26. Anand DV, Lim E, Hopkins D, Corder R, Shaw LJ, Sharp P, et al. Risk stratification in uncomplicated type 2 diabetes: Prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J 2006;27:713-21.

    Article  PubMed  Google Scholar 

  27. Berman DS. Complementary roles of coronary calcium scanning and myocardial perfusion SPECT. J Nucl Cardiol 2004;11:379-81.

    Article  PubMed  Google Scholar 

  28. Rozanski A, Gransar H, Wong ND, Shaw LJ, Miranda-Peats R, Polk D, et al. Clinical outcomes after both coronary calcium scanning and exercise myocardial perfusion scintigraphy. J Am Coll Cardiol 2007;49:1352-61.

    Article  CAS  PubMed  Google Scholar 

  29. Shavelle DM, Budoff MJ, LaMont DH, Shavelle RM, Kennedy JM, Brundage BH. Exercise testing and electron-beam computed tomography in the evaluation of coronary artery disease. J Am Coll Cardiol 2000;3:32-8.

    Article  Google Scholar 

  30. Schenker MP, Dorbala S, Hong EC, Rybicki FJ, Hachamovitch R, Kwong RY, et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: A combined positron emission tomography/computed tomography study. Circulation 2008;117:1627-9.

    Article  Google Scholar 

  31. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary artery disease. N Engl J Med 1979;300:1350-8.

    CAS  PubMed  Google Scholar 

  32. Anderson KM, Wilson PW, Odell PM, Kannel WB. An updated coronary risk profile: A statement for health professionals. Circulation 1991;83:356-62.

    CAS  PubMed  Google Scholar 

  33. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R, et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15:827-32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Bybee MD.

Additional information

See related editorial, doi:10.1007/s12350-009-9185-7.

Kevin A. Bybee, Richard Markiewicz, and Timothy M. Bateman were involved in the conception, design, analysis, and interpretation of the data. They were participants in the drafting of the manuscript and approval of the manuscript in its final version. John Lee, Ryan Longmore, A. Iain McGhie, James H. O’Keefe, Bai-Ling Hsu, Kevin Kennedy, and Randall C. Thompson were involved in the design, analysis and interpretation of the data. They were participants in the critical revision of the manuscript for important intellectual content and approval of the manuscript in its final version.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bybee, K.A., Lee, J., Markiewicz, R. et al. Diagnostic and clinical benefit of combined coronary calcium and perfusion assessment in patients undergoing PET/CT myocardial perfusion stress imaging. J. Nucl. Cardiol. 17, 188–196 (2010). https://doi.org/10.1007/s12350-009-9159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-009-9159-9

Keywords

Navigation