Skip to main content
Log in

Existence of Positive Solutions for (Np)-Laplace Equation with Exponential Nonlinearity Term and Convection Term in Dimension \({\mathbb {N}}\)

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the the following problem

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta _N u-\mu \Delta _p u=\lambda (u^{r}+a|\nabla u|^{s})+f(x,u)&{}\quad \mathrm{in} \; \Omega ,\\ u>0 &{}\quad \mathrm{in} \; \Omega ,\\ u=0 &{}\quad \mathrm{on} \; \partial \Omega . \end{array}\right. } \end{aligned}$$
(0.1)

The term f could be exponential growth at \(+\infty \). The convection term involved with \(\nabla u\) makes the problem (0.1) nonvariational and the variational methods are not applicable. Under suitable conditions imposed on f, the approximation scheme is employed to obtain the existence of positive solutions for all \(\lambda \in (0,\lambda ^*]\) with \(\lambda ^*>0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Amann, H., Crandall, M.G.: On some existence theorems for semi-linear elliptic equations. Indiana Univ. Math. J. 27(5), 779–790 (1978)

    Article  MathSciNet  Google Scholar 

  2. Bahrouni, A., Rădulescu, V.D., Repovš, D.D.: Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves. Nonlinearity 32(7), 2481–2495 (2019)

    Article  MathSciNet  Google Scholar 

  3. Benci, V., D’Avenia, P., Fortunato, D., Pisani, L.: Solitons in several space dimensions: Derrick’s problem and infinitely many solutions. Arch. Ration. Mech. Anal. 154(4), 297–324 (2000)

    Article  MathSciNet  Google Scholar 

  4. Brézis, H., Turner, R.E.L.: On a class of superlinear elliptic problems. Commun. Partial Differ. Equ. 2(6), 601–614 (1977)

    Article  MathSciNet  Google Scholar 

  5. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    Book  Google Scholar 

  6. Cao, D.M.: Nontrivial solution of semilinear elliptic equation with critical exponent in \({ R}^2\). Commun. Partial Differ. Equ. 17(3–4), 407–435 (1992)

    Article  Google Scholar 

  7. Cherfils, L., Ilyasov, Y.: On the stationary solutions of generalized reaction diffusion equations with \(p\) &\(q\)-Laplacian. Commun. Pure Appl. Anal. 4(1), 9–22 (2005)

    Article  MathSciNet  Google Scholar 

  8. DaJun, G.: Nonlinear Functional Analysis. Modern Mathematical Foundation, 3rd edn. Higher Education Press, Beijing (2015)

    Google Scholar 

  9. de Araujo, A.L.A., Faria, L.F.O.: Positive solutions of quasilinear elliptic equations with exponential nonlinearity combined with convection term. J. Differ. Equ. 267(8), 4589–4608 (2019)

    Article  MathSciNet  Google Scholar 

  10. de Araujo, A.L.A., Montenegro, M.: Existence of solution for a nonvariational elliptic system with exponential growth in dimension two. J. Differ. Equ. 264(3), 2270–2286 (2018)

    Article  MathSciNet  Google Scholar 

  11. Díaz, J.I., Evaristo Saá, J.: Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I Math. 305(12), 521–524 (1987)

    MathSciNet  MATH  Google Scholar 

  12. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  13. Faraci, F., Motreanu, D., Puglisi, D.: Positive solutions of quasi-linear elliptic equations with dependence on the gradient. Calc. Var. Partial Differ. Equ. 54(1), 525–538 (2015)

    Article  MathSciNet  Google Scholar 

  14. Faria, L.F.O., Miyagaki, O.H., Motreanu, D.: Comparison and positive solutions for problems with the \((p,q)\)-Laplacian and a convection term. Proc. Edinb. Math. Soc. (2) 57(3), 687–698 (2014)

    Article  MathSciNet  Google Scholar 

  15. Fučík, S., John, O., Nečas, J.: On the existence of Schauder bases in Sobolev spaces. Comment. Math. Univ. Carolinae 13, 163–175 (1972)

    MathSciNet  MATH  Google Scholar 

  16. Kesavan, S.: Topics in Functional Analysis and Applications. John Wiley & Sons Inc, New York (1989)

    MATH  Google Scholar 

  17. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York-London (1968)

  18. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12(11), 1203–1219 (1988)

    Article  MathSciNet  Google Scholar 

  19. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Commun. Partial Differ. Equ. 16(2–3), 311–361 (1991)

    Article  Google Scholar 

  20. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71)

  21. Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Multiple constant sign and nodal solutions for nonlinear Neumann eigenvalue problems. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10(3), 729–755 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Papageorgiou, N.S., Vetro, C., Vetro, F.: Singular double phase problems with convection. Acta Appl. Math. 170, 947–962 (2020)

    Article  MathSciNet  Google Scholar 

  23. Pucci, P., Serrin, J.: The Maximum Principle. Progress in Nonlinear Differential Equations and their Applications, vol. 73. Birkhäuser Verlag, Basel (2007)

  24. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  25. Willem, M.: Functional Analysis. Cornerstones. Birkhäuser/Springer, New York (2013). Fundamentals and applications

  26. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50(4), 675-710,877 (1986)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Ethics declarations

Conflict of interest

This work does not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by National Natural Science Foundation of China (Grant No. 12071266, 12101376, 12026218, 11801338) and Research Project Supported by Shanxi Scholarship Council of China, 2020-005.

Appendix

Appendix

Lemma A.1

Assume that sequence \(\{u_n\}\subset W_0^{1,N}(\Omega )\) satisfies \(u_n\rightarrow u\) in \(W_0^{1,N}(\Omega )\) as \(n\rightarrow \infty \). Then there exists a subsequence \(\{u_{n_j}\}\) and \(\omega \in W_0^{1,N}(\Omega )\) such that

$$\begin{aligned} u_{n_j}(x)\rightarrow u(x) \quad \mathrm{a.e.} \; x\in \Omega , \end{aligned}$$

and

$$\begin{aligned} |u_{n_{j}}(x)|,|u(x)|\leqslant w(x) \; \mathrm{a.e.}\; x\in \Omega . \end{aligned}$$

Proof

Since \(u_n\rightarrow u\) in \(W_0^{1,N}(\Omega )\), going if necessary to a subsequence, we have

$$\begin{aligned} u_{n}\rightarrow u\quad \mathrm{in}\; L^{t}(\Omega ), \quad t\in [1,\infty ),\\ u_{n}(x)\rightarrow u(x) \quad \mathrm{a.e.} \; x\in \Omega . \end{aligned}$$

There exists a subsequence \(\{u_{n_j}\}\) of \(\{u_n\}\) such that

$$\begin{aligned} \Vert u_{n_{j+1}}-u_{n_j}\Vert \leqslant 2^{-j}. \end{aligned}$$

Set

$$\begin{aligned} w(x):=|u_{n_1}(x)|+\sum _{j=1}^{\infty }|u_{n_{j+1}(x)}-u_{n_{j}}(x)|, \quad x\in \Omega . \end{aligned}$$

It is clear that \(w\in W_0^{1,N}(\Omega )\) and \(|u_{n_{j}}(x)|,|u(x)|\leqslant w(x)\) a.e. \(x\in \Omega \). \(\square \)

Lemma A.2

Suppose condition \(\mathrm{(F)}\) holds. Let \(u_n\rightarrow u\) in \(W_0^{1,N}(\Omega )\) as \(n\rightarrow \infty \). Then

$$\begin{aligned} f(\cdot ,u_n(\cdot ))\rightarrow f(\cdot ,u(\cdot )) \quad \mathrm{in}\; L^t(\Omega ), \quad t\in [1,\infty ). \end{aligned}$$
(A.1)

Proof

According to \(u_n\rightarrow u\) in \(W_0^{1,N}(\Omega )\) and Lemma A.1, going to a subsequence \(\{u_{n_j}\}\) we have

$$\begin{aligned}&u_{n_j}\rightarrow u\quad \mathrm{in} \; L^{t}(\Omega ), \; t\in [1,\infty ),\nonumber \\&u_{n_j}(x)\rightarrow u(x) \quad \mathrm{a.e.} \; x\in \Omega , \end{aligned}$$
(A.2)
$$\begin{aligned}&|u_{n_{j}}(x)|,|u(x)|\leqslant w(x) \quad \mathrm{a.e.}\; x\in \Omega . \end{aligned}$$
(A.3)

On the one hand, by (A.2) and \(f\in C(\Omega \times {\mathbb {R}})\), we get

$$\begin{aligned} |f(x,u_{n_j}(x))-f(x,u(x))|^t\rightarrow 0 \quad \mathrm{a.e.} \; x\in \Omega . \end{aligned}$$

On the other hand, by the condition \(\mathrm{(F)}\), we have

$$\begin{aligned} |f(x,u_{n_j})-f(x,u)|^t&\leqslant 2^{t-1}\left( |f(x,u_{n_j})|^t+|f(x,u)|^t\right) \\&\leqslant 2^{t-1}C_0^t\bigg (|u_{n_j}|^{qt}\mathrm{exp}(t\alpha |u_{n_j}|^{N/(N-1)})\\&\quad +|u|^{qt}\mathrm{exp}(t\alpha |u|^{N/(N-1)})\bigg )\\&\leqslant 2^{t}C_0^t\left( w^{qt}\mathrm{exp}(t\alpha |w|^{N/(N-1)})\right) . \end{aligned}$$

By the Hölder inequality and Lemma 2.6, we have

$$\begin{aligned} \int _{\Omega }\left( w^{qt}\mathrm{exp}(t\alpha |w|^{N/(N-1)})\right) \leqslant |w|_{2 qt}^{qt}\left( \int _{\Omega }\mathrm{exp}(2t\alpha |w|^{{N/(N-1)}})\right) ^{1/2}<\infty . \end{aligned}$$

Therefore, by the Lebesgue dominated convergence theorem, we obtain

$$\begin{aligned} f(\cdot ,u_{n_j}(\cdot ))\rightarrow f(\cdot ,u(\cdot )) \quad \mathrm{in} \; L^t(\Omega ), \; t\in [1,\infty ). \end{aligned}$$

\(\square \)

Now, for \(m\in {\mathbb {N}}\), we consider the mapping \(A_m:W_m\rightarrow W_m^*\) defined by

$$\begin{aligned} \langle A_mu,\phi \rangle&=\int _{\Omega }|\nabla u|^{N-2}\nabla u\cdot \nabla \phi +\mu \int _{\Omega }|\nabla u|^{p-2}\nabla u\cdot \nabla \phi \\&\quad -\lambda \left( \int _{\Omega }(u^+)^{r}\phi +a\int _{\Omega }|\nabla u|^{s}\phi \right) -\int _{\Omega }f(x,u)\phi -\varepsilon \int _{\Omega }\phi , \end{aligned}$$

for \(u,\phi \in W_m\).

Lemma A.3

Under the condition (F), \(A_m\) is continuous.

Proof

Suppose \(u_n\rightarrow u\) in \(W_m\). For any \(\phi \in W_m\) we get

$$\begin{aligned} \left\langle A_mu_n-A_mu,\phi \right\rangle&=\int _{\Omega }(|\nabla u_n|^{N-2}\nabla u_n-|\nabla u|^{N-2}\nabla u)\cdot \nabla \phi \\&\quad +\mu \int _{\Omega }(|\nabla u_n|^{p-2}\nabla u_n-|\nabla u|^{p-2}\nabla u)\cdot \nabla \phi \\&\quad -\lambda \left( \int _{\Omega }(u_n^+)^{r}\phi -\int _{\Omega }(u^+)^{r}\phi +a\int _{\Omega }|\nabla u_n|^{s}\phi \right. \\&\quad -\left. a\int _{\Omega }|\nabla u|^{s}\phi \right) -\int _{\Omega }(f(x,u_n)-f(x,u))\phi . \end{aligned}$$

By the Hölder inequality and the Sobolev embedding inequality, we deduce that

$$\begin{aligned} \left| \int _{\Omega }(|\nabla u_n|^{N-2}\nabla u_n-|\nabla u|^{N-2}\nabla u)\cdot \nabla \phi \right|&\leqslant \int _{\Omega }\left| |\nabla u_n|^{N-2}\nabla u_n-|\nabla u|^{N-2}\nabla u\right| |\nabla \phi |\\&\leqslant C\int _{\Omega }(|\nabla u_n|+|\nabla u|)^{N-2}|\nabla u_n-\nabla u||\nabla \phi |\\&\leqslant C(\Vert u_n\Vert ^{N-2}+\Vert u\Vert ^{N-2})\Vert u_n-u\Vert \Vert \phi \Vert ,\\ \left| \int _{\Omega }(|\nabla u_n|^{p-2}\nabla u_n-|\nabla u|^{p-2}\nabla u)\cdot \nabla \phi \right|&\leqslant \int _{\Omega }\left| |\nabla u_n|^{p-2}\nabla u_n-|\nabla u|^{p-2}\nabla u\right| |\nabla \phi |\\&\leqslant C\int _{\Omega }(|\nabla u_n|+|\nabla u|)^{p-2}|\nabla u_n-\nabla u||\nabla \phi |\\&\leqslant C(|\nabla u_n|_p^{p-2}+|\nabla u|_p^{p-2})|\nabla (u_n-u)|_p|\nabla \phi |_p\\&\leqslant C(\Vert u_n\Vert ^{p-2}+\Vert u\Vert ^{p-2})\Vert u_n-u\Vert \Vert \phi \Vert ,\\ \left| \int _{\Omega }(u_n^+)^{r}\phi -\int _{\Omega }(u^+)^{r}\phi \right|&\leqslant \left| (u_n^+)^{r}-(u^+)^{r}\right| _{2}|\phi |_2\\&\leqslant \gamma _2\left| (u_n^+)^{r}-(u^+)^{r}\right| _{2}\Vert \phi \Vert ,\\ \left| \int _{\Omega }|\nabla u_n|^{s}\phi -\int _{\Omega }|\nabla u|^{s}\phi \right|&\leqslant \left| |\nabla u_n|^{s}-|\nabla u|^{s}\right| _{N/s}|\phi |_{N/(N-s)}\\&\leqslant \gamma _{N/(N-s)}\left| |\nabla u_n|^{s}-|\nabla u|^{s}\right| _{N/s}\Vert \phi \Vert ,\\ \left| \int _{\Omega }f(x,u_n)\phi -\int _{\Omega }f(x,u)\phi \right|&\leqslant |f(x,u_n)-f(x,u)|_2|\phi |_2\\&\leqslant \gamma _2|f(x,u_n) -f(x,u)|_2\Vert \phi \Vert . \end{aligned}$$

Thus,

$$\begin{aligned} \Vert A_mu_n-A_mu\Vert _{W_m^*}&=\sup \limits _{\Vert \phi \Vert _{W_m}=1}|\langle A_mu_n-A_mu,\phi \rangle |\\&\leqslant C(\Vert u_n\Vert ^{N-2}+\Vert u\Vert ^{N-2})\Vert u_n-u\Vert \\&\quad +\mu C(\Vert u_n\Vert ^{p-2}+\Vert u\Vert ^{p-2})\Vert u_n-u\Vert \\&\quad +\lambda \gamma _2\left| (u_n^+)^{r}-(u^+)^{r}\right| _2+a\lambda \gamma _{N/(N-s)}\left| |\nabla u_n|^{s}\right. \\&\quad -\left. |\nabla u|^{s}\right| _{N/s}+\gamma _2|f(x,u_n)-f(x,u)|_2. \end{aligned}$$

Since \(u_n\rightarrow u\) in \(W_m\), going if necessary to subsequences, we have

$$\begin{aligned}&u_{n}\rightarrow u\quad \mathrm{in} \; L^{t}(\Omega ), \; t\in [1,\infty ), \\&u_{n}(x)\rightarrow u(x)\quad \mathrm{a.e.} \; x\in \Omega , \\&\nabla u_{n}(x)\rightarrow \nabla u(x)\quad \mathrm{a.e.} \; x\in \Omega . \end{aligned}$$

By the Lebesgue dominated convergence theorem and Lemma A.2, we have

$$\begin{aligned}&\lim _{n\rightarrow \infty }\int _{\Omega }\left| (u_n^+)^{r}-(u^+)^{r}\right| ^2=0, \\&\lim _{n\rightarrow \infty }\int _{\Omega }\left| |\nabla u_n|^{s}-|\nabla u|^{s}\right| ^{N/s}=0, \\&\lim _{n\rightarrow \infty }\int _{\Omega }\left| f(x,u_n)-f(x,u)\right| ^{2}=0. \end{aligned}$$

Therefore,

$$\begin{aligned} \lim _{n\rightarrow \infty }\Vert A_mu_n-A_mu\Vert _{W_m^*}=0. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W. Existence of Positive Solutions for (Np)-Laplace Equation with Exponential Nonlinearity Term and Convection Term in Dimension \({\mathbb {N}}\). Qual. Theory Dyn. Syst. 21, 71 (2022). https://doi.org/10.1007/s12346-022-00604-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00604-y

Keywords

Navigation