Skip to main content
Log in

Quantitative Evaluation of Stance as a Sensitive Biomarker of Postural Ataxia Development in Preclinical SCA1 Mutation Carriers

  • RESEARCH
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the time between the first detection of postural control impairments and the evident manifestation of ataxia in preclinical SCA1 individuals. Twenty five preclinical SCA1 mutation carriers: 13 with estimated disease onset ≤ 6 years (SCA1 +) aged 27.8 ± 8.1 years; 12 with expected disease onset > 6 years (SCA1-) aged 26.6 ± 3.1 years and 26 age and sex matched healthy controls (HCs) underwent static posturography during 5 years of observation. The movements of the centre of feet pressure (COP) during quiet standing with eyes open (EO) and closed (EC) were quantified by calculating the mean radius (R), developed surface area (A) and mean COP movement velocity (V). Ataxia was evaluated by use of the Scale for Assessment and Rating of Ataxia (SARA).

SCA1 + exhibited significantly worse quality of stance with EC vs. SCA1- (p < 0.05 for V) and HCs (p < 0.001) even 5 to 6 years before estimated disease onset. There were no statistically significant differences between SCA1- and HCs. A slow increase in Cohen’s d effect size was observed for VEO up to the clinical manifestation of ataxia. VEO and AEC recorded in preclinical SCA1 individuals correlated slightly but statistically significantly with SARA (r = 0.47).

The study confirms that static posturography detects COP sway changes in SCA1 preclinical gene carriers even 5 to 6 years before estimated disease onset. The quantitative evaluation of stance in preclinical SCA is a sensitive biomarker for the monitoring of the disease progression and may be useful in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study is available from the corresponding author upon reasonable request.

Abbreviations

A :

The center of feet pressure developed surface area

BMI :

Body mass index

CAG :

Cytosine-Adenine-Guanine Triplet

COP :

Center of Feet Pressure

EC :

Eyes Closed

EO :

Eyes Open

HC :

Healthy Controls

INAS :

Inventory of Non-Ataxia Signs

R :

Mean Center of Feet Pressure Sway Radius

SARA :

Scale for Assessment and Rating of Ataxia

SCA :

Spinocerebellar Ataxia

SCA1 :

Spinocerebellar Ataxia Type 1

SCA1 + :

Preclinical SCA1 Mutation carriers Who had ≤ 6 Years-to-Ataxia-Onset

SCA1 - :

Preclinical SCA1 Mutation Carriers who had > 6 Years-to-Ataxia-Onset

V :

The Center of Feet Pressure Mean Velocity

References

  1. Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia Nat Rev Dis Primers. 2019;5(1):24. https://doi.org/10.1038/s41572-019-0074-3.

    Article  PubMed  Google Scholar 

  2. Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4(3):221–6. https://doi.org/10.1038/ng0793-221.

    Article  CAS  PubMed  Google Scholar 

  3. Sułek-Piątkowska A, Zdzienicka E, Rakowicz M, Krysa W, Rajkiewicz M, Szirkowiec W, Zaremba J. The occurrence of spinocerebellar ataxias caused by dynamic mutations in Polish patients. Neurol Neurochir Pol. 2010;44(3):238–45. https://doi.org/10.1016/s0028-3843(14)60037-2.

    Article  PubMed  Google Scholar 

  4. Manto M, Gandini J, Feil K, Strupp M. Cerebellar ataxias: an update. Curr Opin Neurol. 2020;33(1):150–60. https://doi.org/10.1097/WCO.0000000000000774.

    Article  PubMed  Google Scholar 

  5. Farinelli V, Palmisano C, Marchese SM, Strano CMM, D’Arrigo S, Pantaleoni C, Ardissone A, Nardocci N, Esposti R, Cavallari P. Postural Control in Children with Cerebellar Ataxia. Appl Sci. 2020;10(5):1606. https://doi.org/10.3390/app10051606.

    Article  CAS  Google Scholar 

  6. Globas C, du Montcel ST, Baliko L, Boesch S, Depondt C, DiDonato S, Durr A, Filla A, Klockgether T, Mariotti C, Melegh B, Rakowicz M, Ribai P, Rola R, Schmitz-Hubsch T, Szymanski S, Timmann D, Van de Warrenburg BP, Bauer P, Schols L. Early Symptoms in Spinocerebellar Ataxia Type 1, 2, 3, and 6. Mov Disord. 2008;23(15):2232–8. https://doi.org/10.1002/mds.22288.

    Article  PubMed  Google Scholar 

  7. Cabaraux P, Agrawal SK, Cai H, Calabro RS, Casali C, Damm L, Doss S, Habas C, Horn AKE, Ilg W, Louis ED, Mitoma H, Monaco V, Petracca M, Ranavolo A, Rao AK, Ruggieri S, Schirinzi T, Serrao M, Summa S, Strupp M, Surgent O, Synofzik M, Tao S, Terasi H, Torres-Russotto D, Travers B, Roper JA, Manto M. Consensus Paper: Ataxic Gait. Cerebellum. 2023;22(3):394–430. https://doi.org/10.1007/s12311-022-01373-9.

    Article  PubMed  Google Scholar 

  8. Mitoma H, Buffo A, Gelfo F, Guell X, Fucà E, Kakei S, Lee J, Manto M, Petrosini L, Shaikh AG, Schmahmann JD. Consensus Paper. Cerebellar Reserve: From Cerebellar Physiology to Cerebellar Disorders. Cerebellum. 2020;19(1):131–53. https://doi.org/10.1007/s12311-019-01091-9.

    Article  CAS  PubMed  Google Scholar 

  9. Ilg W, Fleszar Z, Schatton C, Hengel H, Harmuth F, Bauer P, Timmann D, Giese M, Schöls L, Synofzik M. Individual changes in preclinical spinocerebellar ataxia identified via increased motor complexity. Mov Disord. 2016;31(12):1891–900. https://doi.org/10.1002/mds.26835.

    Article  PubMed  Google Scholar 

  10. Velázquez-Pérez L, Sánchez-Cruz G, Rodríguez-Labrada R, Velázquez-Manresa M, Hechavarría-Pupo R, Almaguer-Mederos LE. Postural Instability in Prodromal Spinocerebellar Ataxia Type 2: Insights into Cerebellar Involvement Before Onset of Permanent Ataxia. Cerebellum. 2017;16(1):279–81. https://doi.org/10.1007/s12311-016-0771-3.

    Article  PubMed  Google Scholar 

  11. Nanetti L, Alpini D, Mattei V, Castaldo A, Mongelli A, Brenna G, Gellera C, Mariotti C. Stance instability in preclinical SCA1 mutation carriers: A 4-year prospective posturography study. Gait Posture. 2017;57:11–4. https://doi.org/10.1016/j.gaitpost.2017.05.007.

    Article  PubMed  Google Scholar 

  12. Ruhe A, Fejer R, Walker B. The test-retest reliability of centre of pressure measures in bipedal static task conditions-a systematic review of the literature. Gait Posture. 2010;32(4):436–45. https://doi.org/10.1016/j.gaitpost.2010.09.012.

    Article  PubMed  Google Scholar 

  13. Scoppa F, Capra R, Gallamini M, Shiffer R. Clinical stabilometry standardization: basic definitions–acquisition interval–sampling frequency. Gait Posture. 2013;37(2):290–2. https://doi.org/10.1016/j.gaitpost.2012.07.009.

    Article  PubMed  Google Scholar 

  14. Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS, Kremer B, Mariotti C, Melegh B, Pandolfo M, Rakowicz M, Ribai P, Rola R, Schöls L, Szymanski S, van de Warrenburg BP, Dürr A, Klockgether T, Fancellu R. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20. https://doi.org/10.1212/01.wnl.0000219042.60538.92.

    Article  PubMed  Google Scholar 

  15. Jacobi H, Rakowicz M, Rola R, Fancellu R, Mariotti C, Charles P, Dürr A, Küper M, Timmann D, Linnemann C, Schöls L, Kaut O, Schaub C, Filla A, Baliko L, Melegh B, Kang JS, Giunti P, van de Warrenburg BP, Fimmers R, Klockgether T. Inventory of Non-Ataxia Signs (INAS): validation of a new clinical assessment instrument. Cerebellum. 2013;12(3):418–28. https://doi.org/10.1007/s12311-012-0421-3.

    Article  CAS  PubMed  Google Scholar 

  16. Jacobi H, du Montcel ST, Bauer P, Giunti P, Cook A, Labrum R, Parkinson MH, Durr A, Brice A, Charles P, Marelli C, Mariotti C, Nanetti L, Sarro L, Rakowicz M, Sulek A, Sobanska A, Schmitz-Hübsch T, Schöls L, Hengel H, Baliko L, Melegh B, Filla A, Antenora A, Infante J, Berciano J, van de Warrenburg BP, Timmann D, Szymanski S, Boesch S, Nachbauer W, Kang JS, Pandolfo M, Schulz JB, Melac AT, Diallo A, Klockgether T. Long-term evolution of patient-reported outcome measures in spinocerebellar ataxias. J Neurol. 2018;265(9):2040–51. https://doi.org/10.1007/s00415-018-8954-0.

    Article  PubMed  Google Scholar 

  17. Tezenas du Montcel S, Durr A, Rakowicz M, Nanetti L, Charles P, Sulek A, Mariotti C, Rola R, Schols L, Bauer P, Dufaure-Garé I, Jacobi H, Forlani S, Schmitz-Hübsch T, Filla A, Timmann D, van de Warrenburg BP, Marelli C, Kang JS, Giunti P, Cook A, Baliko L, Melegh B, Boesch S, Szymanski S, Berciano J, Infante J, Buerk K, Masciullo M, Di Fabio R, Depondt C, Ratka S, Stevanin G, Klockgether T, Brice A, Golmard JL. Prediction of the age at onset in spinocerebellar ataxia type 1 2 3 and 6. J Med Genet. 2014;51(7):479–86. https://doi.org/10.1136/jmedgenet-2013-102200.

    Article  PubMed  Google Scholar 

  18. Chandrasekaran J, Petit E, Park YW, du Montcel ST, Joers JM, Deelchand DK, Považan M, Banan G, Valabregue R, Ehses P, Faber J, Coupé P, Onyike CU, Barker PB, Schmahmann JD, Ratai EM, Subramony SH, Mareci TH, Bushara KO, Paulson H, Durr A, Klockgether T, Ashizawa T, Lenglet C, Öz G; READISCA Consortium. Clinically Meaningful Magnetic Resonance Endpoints Sensitive to Preataxic Spinocerebellar Ataxia Types 1 and 3. Ann Neurol. 2022;13:https://doi.org/10.1002/ana.26573. https://doi.org/10.1002/ana.26573

  19. Czerwosz L, et al. Recognition of Posture and Gait Disturbances in Patients with Normal Pressure Hydrocephalus Using a Posturography and Computer Dynography Systems. Hydrocephalus. Dr Sadip Pant (Ed.). InTech 2012, 12; 189–214 ISBN: 978–953–51–0162–8, Available from: http://www.intechopen.com/books/hydrocephalus

  20. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. USA: Lawrence Erlbaum Associates; 1988.

    Google Scholar 

  21. Sawilowsky S. New effect size rules of thumb. J Mod Appl Stat Methods. 2009;8(2):467–74. https://doi.org/10.22237/jmasm/1257035100.

    Article  MathSciNet  Google Scholar 

  22. Maas RP, van Gaalen J, Klockgether T, van de Warrenburg BP. The preclinical stage of spinocerebellar ataxias. Neurology. 2015;85(1):96–103. https://doi.org/10.1212/WNL.0000000000001711.

    Article  PubMed  Google Scholar 

  23. Velázquez-Pérez L, Rodriguez-Labrada R, González-Garcés Y, Arrufat-Pie E, Torres-Vega R, Medrano-Montero J, Ramirez-Bautista B, Vazquez-Mojena Y, Auburger G, Horak F, Ziemann U, Gomez CM. Prodromal Spinocerebellar Ataxia Type 2 Subjects Have Quantifiable Gait and Postural Sway Deficits. Mov Disord. 2021;36(2):471–80. https://doi.org/10.1002/mds.28343.

    Article  PubMed  Google Scholar 

  24. Laurens J, Meng H, Angelaki DE. Neural representation of orientation relative to gravity in the macaque cerebellum. Neuron. 2013;80(6):1508–18. https://doi.org/10.1016/j.neuron.2013.09.029.

    Article  CAS  PubMed  Google Scholar 

  25. Dakin CJ, Peters A, Giunti P, Day BL. Cerebellar Degeneration Increases Visual Influence on Dynamic Estimates of Verticality. Curr Biol. 2018;28(22):3589–98. https://doi.org/10.1016/j.cub.2018.09.049.

    Article  CAS  PubMed  Google Scholar 

  26. Cameron MH, Horak FB, Herndon RR, Bourdette D. Imbalance in multiple sclerosis: a result of slowed spinal somatosensory conduction. Somatosens MotorRes. 2008;25:113–22. https://doi.org/10.1080/08990220802131127.

    Article  Google Scholar 

  27. Manto M, Oulad Ben Taib N. The contributions of the cerebellum in sensorimotor control: what are the prevailing opinions which will guide forthcoming studies? Cerebellum. 2013;12(3):313–5. https://doi.org/10.1007/s12311-013-0449-z.

    Article  PubMed  Google Scholar 

  28. Velázquez-Pérez L, Rodríguez-Diaz JC, Rodríguez-Labrada R, Medrano-Montero J, Aguilera Cruz AB, Reynaldo-Cejas L, Góngora-Marrero M, Estupiñán-Rodríguez A, Vázquez-Mojena Y, Torres-Vega R. Neurorehabilitation Improves the Motor Features in Prodromal SCA2: A Randomized. Controlled Trial Mov Disord. 2019;34(7):1060–8. https://doi.org/10.1002/mds.27676.

    Article  PubMed  Google Scholar 

  29. Martino G, Ivanenko YP, d’Avella A, Serrao M, Ranavolo A, Draicchio F, Cappellini G, Casali C, Lacquaniti F. Neuromuscular adjustments of gait associated with unstable conditions. J Neurophysiol. 2015;114(5):2867–82. https://doi.org/10.1152/jn.00029.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vuillerme N, Nafati G. How attentional focus on body sway affects postural control during quiet standing. Psychol Res. 2007;71:192–200. https://doi.org/10.1007/s00426-005-0018-2.

    Article  PubMed  Google Scholar 

  31. Jardim LB, Hauser L, Kieling C, Saute JA, Xavier R, Rieder CR, Monte TL, Camey S, Torman VB. Progression rate of neurological deficits in a 10-year cohort of SCA3 patients. Cerebellum. 2010;9(3):419–28. https://doi.org/10.1007/s12311-010-0179-4.

    Article  PubMed  Google Scholar 

  32. Ashizawa T, Figueroa KP, Perlman SL, Gomez CM, Wilmot GR, Schmahmann JD, Ying SH, Zesiewicz TA, Paulson HL, Shakkottai VG, Bushara KO, Kuo SH, Geschwind MD, Xia G, Mazzoni P, Krischer JP, Cuthbertson D, Holbert AR, Ferguson JH, Pulst SM, Subramony SH. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J Rare Dis. 2013;13(8):177. https://doi.org/10.1186/1750-1172-8-177.

    Article  Google Scholar 

  33. Tezenas du Montcel S, Petit E, Olubajo T, Faber J, Lallemant-Dudek P, Bushara K, Perlman S, Subramony SH, Morgan D, Jackman B, Paulson HL, Öz G, Klockgether T, Durr A, Ashizawa T. READISCA Consortium Collaborators Baseline Clinical and Blood Biomarkers in Patients With Preataxic and Early-Stage Disease Spinocerebellar Ataxia 1 and 3. Neurology. 2023;100(17):1836–48. https://doi.org/10.1212/WNL.0000000000207088.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all of the patients, their family members and healthy volunteers for their kind cooperation. Anna Sobanska would like to thank dr Beata Sokolowska for tutorials in medical statistics, which enabled her to calculate most of the statistics in this study.

Funding

This article will be available under subscription. The data presented in this publication is a part of an intramural project No 501–061-16038 funded by Polish Ministry of Education.

Author information

Authors and Affiliations

Authors

Contributions

MR (Maria Rakowicz), LC (Leszek Czerwosz) and ASu (Anna Sulek) had the idea of the study. MR (Maria Rakowicz) was the senior mentor of the study. ASo (Anna Sobanska) performed the most of the tests during the participants’ visits. The remaining tests were done by RR (Rafal Rola), IS (Iwona Stepniak) and MR (Maria Rakowicz). LC (Leszek Czerwosz) and ASo (Anna Sobanska) did statistics. ASo (Anna Sobanska) prepared the draft of the article. LC (Leszek Czerwosz) prepared the figures. All authors reviewed the manuscript. None of the authors stated disapproval of the final version of the article.

Corresponding author

Correspondence to Anna Sobanska.

Ethics declarations

Ethical Approval

The study was approved by the Bioethics Committee of the Institute of Psychiatry and Neurology in Warsaw (resolutions 2/2011 and 27/2017). All participants signed a written informed consent before they entered the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Leszek Czerwosz passed away in May 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobanska, A., Czerwosz, L., Sulek, A. et al. Quantitative Evaluation of Stance as a Sensitive Biomarker of Postural Ataxia Development in Preclinical SCA1 Mutation Carriers. Cerebellum (2024). https://doi.org/10.1007/s12311-024-01679-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12311-024-01679-w

Keywords

Navigation