Skip to main content
Log in

Collaboration of Cerebello-Rubral and Cerebello-Striatal Loops in a Motor Preparation Task

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

In this study, we used fMRI to identify brain regions associated with concentration (sustained attention) during a motor preparation task. In comparison with a non-concentration task, increased activities were observed (P < 0.05, FWE-corrected P values) in cerebellar lobules VI and VII, motor cortex, pre-supplementary motor area (pre-SMA), thalamus, red nucleus (RN), and caudate nucleus (CN). Moreover, analysis of effective connectivity inter-areal (psychophysiological interactions) showed that during preparation, concentration-related brain activity increase was dependent on Cerebello-thalamo-pre-SMA-RN and Pre-SMA-CN-thalamo-M1 loops. We postulate that, while pre-SMA common to both loops is specifically involved in the movement preparation and readiness for voluntary movement through the striatum, the cerebellar lobule VI in conjunction with RN, likely through a cerebellar-rubro-olivary-cerebellar loop, might be implicated in concentration-related optimization of upcoming motor performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cunnington R, Windischberger C, Deecke L, Moser E. The preparation and readiness for voluntary movement: a high-field event-related fMRI study of the Bereitschafts-BOLD response. NeuroImage. 2003;20(1):404–12.

    Article  Google Scholar 

  2. Nguyen VT, Breakspear M, Cunnington R. Reciprocal interactions of the SMA and cingulate cortex sustain premovement activity for voluntary actions. J Neurosci. 2014;34(49):16397–407.

    Article  CAS  Google Scholar 

  3. Thickbroom G, Byrnes M, Sacco P, Ghosh S, Morris I, Mastaglia F. The role of the supplementary motor area in externally timed movement: the influence of predictability of movement timing. Brain Res. 2000;874(2):233–41.

    Article  CAS  Google Scholar 

  4. Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res. 1996;3(2):131–41.

    Article  CAS  Google Scholar 

  5. Yazawa S, Ikeda A, Kunieda T, Ohara S, Mima T, Nagamine T, et al. Human presupplementary motor area is active before voluntary movement: subdural recording of Bereitschaftspotential from medial frontal cortex. Exp Brain Res. 2000;131(2):165–77.

    Article  CAS  Google Scholar 

  6. Purzner J, Paradiso GO, Cunic D, Saint-Cyr JA, Hoque T, Lozano AM, et al. Involvement of the basal ganglia and cerebellar motor pathways in the preparation of self-initiated and externally triggered movements in humans. J Neurosci. 2007;27(22):6029–36.

    Article  CAS  Google Scholar 

  7. Weilke F, Spiegel S, Boecker H, von Einsiedel HG, Conrad B, Schwaiger M, et al. Time-resolved fMRI of activation patterns in M1 and SMA during complex voluntary movement. J Neurophysiol. 2001;85(5):1858–63.

    Article  CAS  Google Scholar 

  8. Lee K-M, Chang K-H, Roh J-K. Subregions within the supplementary motor area activated at different stages of movement preparation and execution. NeuroImage. 1999;9(1):117–23.

    Article  CAS  Google Scholar 

  9. MacKinnon C, Bissig D, Chiusano J. Preparation of anticipatory postural adjustments prior to stepping. J Neurophysiol. 2007;97(6):4368–79.

    Article  Google Scholar 

  10. Akkal D, Dum RP, Strick PL. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci. 2007;27(40):10659–73.

    Article  CAS  Google Scholar 

  11. Sussman D, Leung R, Chakravarty M. The developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy. Brain Behav. 2016;6(4):e00457.

    Article  Google Scholar 

  12. Rondi-Reig L, Paradis A-L, Lefort JM, Babayan BM, Tobin C. How the cerebellum may monitor sensory information for spatial representation. Front Syst Neurosci. 2014;8:205.

    Article  Google Scholar 

  13. Richard A, Van Hamme A, Drevelle X, Golmard J-L, Meunier S, Welter M-L. Contribution of the supplementary motor area and the cerebellum to the anticipatory postural adjustments and execution phases of human gait initiation. Neuroscience. 2017;358:181–9.

    Article  CAS  Google Scholar 

  14. D’Angelo E, Mazzarello P, Prestori F, Mapelli J, Solinas S, Lombardo P, et al. The cerebellar network: from structure to function and dynamics. Brain Res Rev. 2011;66(1–2):5–15.

    Article  Google Scholar 

  15. Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185(3):359–81.

    Article  Google Scholar 

  16. Proudfoot M, Rohenkohl G, Quinn A, Colclough GL, Wuu J, Talbot K, et al. Altered cortical beta-band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis. Hum Brain Mapp. 2017;38(1):237–54.

    Article  Google Scholar 

  17. Fekete T, Zach N, Mujica-Parodi L, Turner M. Multiple kernel learning captures a systems-level functional connectivity biomarker signature in amyotrophic lateral sclerosis. PLoS One. 2013;8(12):e85190.

    Article  Google Scholar 

  18. Habas C, Kamdar N, Nguyen D, Prater K. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.

    Article  CAS  Google Scholar 

  19. Manto M, Jissendi P. Cerebellum: links between development, developmental disorders and motor learning. Front Neuroanat. 2012;6:1.

    Article  Google Scholar 

  20. Nioche C, Cabanis E. Functional connectivity of the human red nucleus in the brain resting state at 3T. AJNR Am J Neuroradiol. 2009;30(2):396–403.

    Article  CAS  Google Scholar 

  21. Liu Y, Pu Y, Gao J, Parsons L, Xiong J. The human red nucleus and lateral cerebellum in supporting roles for sensory information processing. Hum Brain Mapp. 2000;10(4):147–59.

    Article  CAS  Google Scholar 

  22. Penhune V, Steele C. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav Brain Res. 2012;226(2):579–91.

    Article  Google Scholar 

  23. Albouy G, King B, Maquet P, Doyon J. Hippocampus and striatum: dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus. 2013;23(11):985–1004.

    Article  Google Scholar 

  24. Grahn J, Parkinson J, Owen A. The cognitive functions of the caudate nucleus. Prog Neurobiol. 2008;86(3):141–55.

    Article  Google Scholar 

  25. Belkhiria C, Driss T, Habas C, Jaafar H, Guillevin R, de Marco G. Exploration and identification of cortico-cerebellar-brainstem closed loop during a motivational-motor task: an fMRI study. Cerebellum. 2017;16(2):326–39.

    Article  Google Scholar 

  26. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–89.

    Article  CAS  Google Scholar 

  27. Satoshi H, Koji J, Akira K, Osamu A, Kuni O, Yasushi M, et al. Changes in cerebro-cerebellar interaction during response inhibition after performance improvement. NeuroImage. 2014;99:142–8.

    Article  Google Scholar 

  28. Stephan K, Marshall J, Friston K, Rowe J. Lateralized cognitive processes and lateralized task control in the human brain. Science. 2003;301(5631):384–6.

    Article  CAS  Google Scholar 

  29. Padoa-Schioppa C, Li CSR, Bizzi E. Neuronal correlates of kinematics-to-dynamics transformation in the supplementary motor area. Neuron. 2002;36(4):751–65.

    Article  CAS  Google Scholar 

  30. Smith AM, Bourbonnais D, Blanchette G. Interaction between forced grasping and a learned precision grip after ablation of the supplementary motor area. Brain Res. 1981;222(2):395–400.

    Article  CAS  Google Scholar 

  31. Cramer SC, Weisskoff RM, Schaechter JD, Nelles G, Foley M, Finklestein SP, et al. Motor cortex activation is related to force of squeezing. Hum Brain Mapp. 2002;16(4):197–205.

    Article  Google Scholar 

  32. Luppino G, Rizzolatti G. The organization of the frontal motor cortex. News Physiol Sci. 2000;15:219–24.

    PubMed  Google Scholar 

  33. Kendall FP, Kendall FP. Muscles: testing and function with posture and pain: Lippincott Williams & Wilkins; 2005.

  34. Visser JE, Bloem BR. Role of the basal ganglia in balance control. Neural Plast. 2005;12(2–3):161–74.

    Article  Google Scholar 

  35. Habas C, Cabanis E. Cortical projections to the human red nucleus: a diffusion tensor tractography study with a 1.5-T MRI machine. Neuroradiology. 2006;48(10):755–62.

    Article  Google Scholar 

  36. Ghez C, Vicario D. The control of rapid limb movement in the cat. II. Scaling of isometric force adjustments. Exp Brain Res. 1978;33(2):191–202.

    CAS  PubMed  Google Scholar 

  37. Ishikawa T, Tomatsu S, Izawa J, Kakei S. The cerebro-cerebellum: could it be loci of forward models? Neurosci Res. 2016;104:72–9.

    Article  Google Scholar 

  38. Cerasa A, Hagberg GE, Peppe A, Bianciardi M, Gioia MC, Costa A, et al. Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson’s disease. Brain Res Bull. 2006;71(13):259–69.

    Article  Google Scholar 

  39. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32(1):413–34.

    Article  CAS  Google Scholar 

  40. Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.

    Article  Google Scholar 

  41. Leiner HC. Solving the mystery of the human cerebellum. Neuropsychol Rev. 2010;20(3):229–35.

    Article  Google Scholar 

  42. Boecker H, Jankowski J, Ditter P, Scheef L. A role of the basal ganglia and midbrain nuclei for initiation of motor sequences. NeuroImage. 2008;39(3):1356–69.

    Article  CAS  Google Scholar 

  43. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. NeuroImage. 2012;59(2):1560–70.

    Article  Google Scholar 

  44. Ng THB, Sowman PF, Brock J, Johnson BW. Neuromagnetic brain activity associated with anticipatory postural adjustments for bimanual load lifting. NeuroImage. 2013;66:343–52.

    Article  Google Scholar 

  45. Bradfield LA, Balleine BW. Thalamic control of dorsomedial striatum regulates internal state to guide goal-directed action selection. J Neurosci. 2017;37(13):3721–33.

    Article  CAS  Google Scholar 

  46. Sang L, Qin W, Liu Y, Han W, Zhang Y, Jiang T, et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. NeuroImage. 2012;61(4):1213–25.

    Article  Google Scholar 

  47. Sege CT, Bradley MM, Lang PJ. Startle modulation during emotional anticipation and perception. Psychophysiology. 2014;51(10):977–81.

    Article  Google Scholar 

  48. Chudasama Y, Robbins TW. Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol Psychol. 2006;73(1):19–38.

    Article  CAS  Google Scholar 

  49. Redgrave P, Gurney K. The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci. 2006;7(12):967–75.

    Article  CAS  Google Scholar 

  50. Bar-Gad I, Morris G, Bergman H. Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol. 2003;71(6):439–73.

    Article  Google Scholar 

  51. Frank MJ. Computational models of motivated action selection in corticostriatal circuits. Curr Opin Neurobiol. 2011;21(3):381–6.

    Article  CAS  Google Scholar 

  52. Gurney KN, Humphries M, Wood R, Prescott TJ, Redgrave P. Testing computational hypotheses of brain systems function: a case study with the basal ganglia. Network. 2004;15(4):263–90.

    Article  CAS  Google Scholar 

  53. Humphries MD, Stewart RD, Gurney KN. A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci. 2006;26(50):12921–42.

    Article  CAS  Google Scholar 

  54. Kawagoe R, Takikawa Y, Hikosaka O. Expectation of reward modulates cognitive signals in the basal ganglia. Nat Neurosci. 1998;1(5):411–6.

    Article  CAS  Google Scholar 

  55. Kawaguchi Y, Wilson CJ, Emson PC. Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci. 1990;10(10):3421–38.

    Article  CAS  Google Scholar 

  56. Smith AD, Bolam JP. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci. 1990;13(7):259–65.

    Article  CAS  Google Scholar 

  57. Schultz W, Apicella P, Ljungberg T, Romo R, Scarnati E. Reward-related activity in the monkey striatum and substantia nigra. Prog Brain Res. 1993;99:227–35.

    Article  CAS  Google Scholar 

  58. Ness V, Beste C. The role of the striatum in goal activation of cascaded actions. Neuropsychologia. 2013;51(13):2562–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chama Belkhiria.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkhiria, C., Mssedi, E., Habas, C. et al. Collaboration of Cerebello-Rubral and Cerebello-Striatal Loops in a Motor Preparation Task. Cerebellum 18, 203–211 (2019). https://doi.org/10.1007/s12311-018-0980-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-018-0980-z

Keywords

Navigation