Skip to main content

Advertisement

Log in

Exploration and Identification of Cortico-Cerebellar-Brainstem Closed Loop During a Motivational-Motor Task: an fMRI Study

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum is involved not only in motor coordination, training, and memory, but also in cognition and emotion. Lobule VI in particular belongs to sensorimotor, salience, and executive cerebellar networks. This study aims to determine whether lobule VI would constitute an integrative interface between motor and cognitive/emotional circuits during a motor task with verbal encouragement, likely in conjunction with the basal ganglia (reward and motivational system). We used fMRI to identify specific recruitment of cerebellar and striatal systems during physical performance using two motor tasks with and without encouragement. We found that: (i) Force results were higher during verbal encouragement than during basal condition in all participants. (ii) The anterior part of the right lobule VI was activated by motor execution in both tasks, while its posterior part was specifically activated by verbal encouragement. (iii) The closed-connectivity loop maintained motivation induced by verbal encouragement between cerebral and cerebellar through the red nucleus and striatal network. Therefore, right lobule VI is a hub-controlling sensorimotor and motivates aspects of motor performance in relation with the red nucleus and the ventral striatum. These results could have important implications for extrapyramidal and multisystem degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McNair PJ, Depledge J, Brettkelly M, Stanley SN. Verbal encouragement: effects on maximum effort voluntary muscle action. Br J Sports Med. 1996;30(3):243–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tod D, Iredale F, Gill N. “Psyching-up” and muscular force production. Sports Med. 2003;33(1):47–58.

    Article  PubMed  Google Scholar 

  3. Amagliani RM, Petrella JK, Jung AP. Type of encouragement influences peak muscle force in college-age women. Int J Exerc Sci. 2010;3(4):2.

    Google Scholar 

  4. Moffatt RJ, Chitwood LF, Biggerstaff KD. The influence of verbal encouragement during assessment of maximal oxygen uptake. J Sports Med Phys Fit. 1994;34(1):45–9.

    CAS  Google Scholar 

  5. Chitwood LF, Moffatt RJ, Burke K, Luchino P, Jordan JC. Encouragement during maximal exercise testing of type A and type B scorers. Percept Mot Skills. 1997;84(2):507–12.

    Article  CAS  PubMed  Google Scholar 

  6. Viru M, Hackney AC, Karelson K, Janson T, Kuus M, Viru A. Competition effects on physiological responses to exercise: performance, cardiorespiratory and hormonal factors. Acta Physiol Hung. 2010;97(1):22–30.

    Article  CAS  PubMed  Google Scholar 

  7. Andreacci JL, LeMura LM, Cohen SL, Urbansky EA, Chelland SA, Von Duvillard SP. The effects of frequency of encouragement on performance during maximal exercise testing. J Sports Sci. 2002;20(4):345–52.

    Article  PubMed  Google Scholar 

  8. Karaba-Jakovljevic D, Popadic-Gacesa J, Grujic N, Barak O, Drapsin M. Motivation and motoric tests in sports. Med Pregl. 2007;60(5–6):231–6.

    Article  PubMed  Google Scholar 

  9. Wulf G, Tollner T, Shea CH. Attentional focus effects as a function of task difficulty. Res Q Exerc Sport. 2007;78(3):257–64.

    Article  PubMed  Google Scholar 

  10. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501.

    Article  PubMed  Google Scholar 

  11. Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. NeuroImage. 2006;30(1):36–51.

    Article  CAS  PubMed  Google Scholar 

  12. Shmuelof L, Krakauer JW. Are we ready for a natural history of motor learning? Neuron. 2011;72(3):469–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Penhune VB, Steele CJ. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav Brain Res. 2012;226(2):579–91.

    Article  PubMed  Google Scholar 

  14. Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185(3):359–81.

    Article  PubMed  PubMed Central  Google Scholar 

  15. D’Angelo E, Mazzarello P, Prestori F, Mapelli J, Solinas S, Lombardo P, et al. The cerebellar network: from structure to function and dynamics. Brain Res Rev. 2011;66(1–2):5–15.

    Article  PubMed  Google Scholar 

  16. Manto MU, Jissendi P. Cerebellum: links between development, developmental disorders and motor learning. Front Neuroanat. 2012;6:1.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hui SH, Wing YK, Poon W, Chan YL, Buckley TA. Alveolar hypoventilation syndrome in brainstem glioma with improvement after surgical resection. Chest. 2000;118(1):266–8.

    Article  CAS  PubMed  Google Scholar 

  18. Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.

    Article  CAS  PubMed  Google Scholar 

  19. Schmahmann JD, Rosene DL, Pandya DN. Motor projections to the basis pontis in rhesus monkey. J Comp Neurol. 2004;478(3):248–68.

    Article  PubMed  Google Scholar 

  20. Tan RH, Devenney E, Kiernan MC, Halliday GM, Hodges JR, Hornberger M. Terra incognita-cerebellar contributions to neuropsychiatric and cognitive dysfunction in behavioral variant frontotemporal dementia. Front Aging Neurosci. 2015;7:121.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pessiglione M, Schmidt L, Draganski B, Kalisch R, Lau H, Dolan RJ, et al. How the brain translates money into force: a neuroimaging study of subliminal motivation. Science. 2007;316(5826):904–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmidt L, Lebreton M, Clery-Melin ML, Daunizeau J, Pessiglione M. Neural mechanisms underlying motivation of mental versus physical effort. PLoS Biol. 2012;10(2), e1001266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Doyon J, Owen AM, Petrides M, Sziklas V, Evans AC. Functional anatomy of visuomotor skill learning in human subjects examined with positron emission tomography. Eur J Neurosci. 1996;8(4):637–48.

    Article  CAS  PubMed  Google Scholar 

  24. Doyon J, Orban P, Barakat M, Debas K, Lungu O, Albouy G, et al. Functional brain plasticity associated with motor learning. Med Sci: M/S. 2011;27(4):413–20.

    Google Scholar 

  25. Albouy G, King BR, Maquet P, Doyon J. Hippocampus and striatum: dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus. 2013;23(11):985–1004.

    Article  PubMed  Google Scholar 

  26. Kuypers HG. Some aspects of the organization of the output of the motor cortex. Ciba Found Symp. 1987;132:63–82.

    CAS  PubMed  Google Scholar 

  27. Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci. 2005;6(9):691–702.

    Article  CAS  PubMed  Google Scholar 

  28. Wallis JD. Orbitofrontal cortex and its contribution to decision-making. Annu Rev Neurosci. 2007;30:31–56.

    Article  CAS  PubMed  Google Scholar 

  29. Rolls ET. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol Hung. 2008;95(2):131–64.

    Article  CAS  PubMed  Google Scholar 

  30. Mainen ZF, Kepecs A. Neural representation of behavioral outcomes in the orbitofrontal cortex. Curr Opin Neurobiol. 2009;19(1):84–91.

    Article  CAS  PubMed  Google Scholar 

  31. Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2010;35(1):4–26.

    Article  Google Scholar 

  32. Grabenhorst F, Rolls ET. Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn Sci. 2011;15(2):56–67.

    Article  PubMed  Google Scholar 

  33. Ruff CC, Fehr E. The neurobiology of rewards and values in social decision making. Nat Rev Neurosci. 2014;15(8):549–62.

    Article  CAS  PubMed  Google Scholar 

  34. Sugrue LP, Corrado GS, Newsome WT. Choosing the greater of two goods: neural currencies for valuation and decision making. Nat Rev Neurosci. 2005;6(5):363–75.

    Article  CAS  PubMed  Google Scholar 

  35. Murray EA, Izquierdo A. Orbitofrontal cortex and amygdala contributions to affect and action in primates. Ann N Y Acad Sci. 2007;1121:273–96.

    Article  PubMed  Google Scholar 

  36. Kim S, Lee D. Prefrontal cortex and impulsive decision making. Biol Psychiatry. 2011;69(12):1140–6.

    Article  PubMed  Google Scholar 

  37. Bartra O, McGuire JT, Kable JW. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage. 2013;76:412–27.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202.

    Article  CAS  PubMed  Google Scholar 

  39. Hoshi E. Functional specialization within the dorsolateral prefrontal cortex: a review of anatomical and physiological studies of non-human primates. Neurosci Res. 2006;54(2):73–84.

    Article  PubMed  Google Scholar 

  40. Petrides M. Functional organization of the human frontal cortex for mnemonic processing. Evidence from neuroimaging studies. Ann N Y Acad Sci. 1995;769:85–96.

    Article  CAS  PubMed  Google Scholar 

  41. Postle BR, Berger JS, Taich AM, D’Esposito M. Activity in human frontal cortex associated with spatial working memory and saccadic behavior. J Cogn Neurosci. 2000;12 Suppl 2:2–14.

    Article  PubMed  Google Scholar 

  42. Wallis JD, Anderson KC, Miller EK. Single neurons in prefrontal cortex encode abstract rules. Nature. 2001;411(6840):953–6.

    Article  CAS  PubMed  Google Scholar 

  43. Barraclough DJ, Conroy ML, Lee D. Prefrontal cortex and decision making in a mixed-strategy game. Nat Neurosci. 2004;7(4):404–10.

    Article  CAS  PubMed  Google Scholar 

  44. Buckley MJ, Mansouri FA, Hoda H, Mahboubi M, Browning PG, Kwok SC, et al. Dissociable components of rule-guided behavior depend on distinct medial and prefrontal regions. Science. 2009;325(5936):52–8.

    Article  CAS  PubMed  Google Scholar 

  45. Wernicke C. Der aphasiche Symptomenkomplex: eine psychologische Studie auf anatomischer Basis. Breslau: Cohen and Weigert; 1874.

    Google Scholar 

  46. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–89.

    Article  CAS  PubMed  Google Scholar 

  47. Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ. Psychophysiological and modulatory interactions in neuroimaging. NeuroImage. 1997;6(3):218–29.

    Article  CAS  PubMed  Google Scholar 

  48. Passamonti L, Rowe JB, Ewbank M, Hampshire A, Keane J, Calder AJ. Connectivity from the ventral anterior cingulate to the amygdala is modulated by appetitive motivation in response to facial signals of aggression. NeuroImage. 2008;43(3):562–70.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage. 2005;25(4):1325–35.

    Article  PubMed  Google Scholar 

  50. Eickhoff SB, Heim S, Zilles K, Amunts K. Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. NeuroImage. 2006;32(2):570–82.

    Article  PubMed  Google Scholar 

  51. Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. NeuroImage. 2009;46(1):39–46.

    Article  PubMed  Google Scholar 

  52. Schmahmann JD, Doyon J, Petrides M, Evans AC, Toga AW. MRI atlas of the human cerebellum: Academic Press; 2000.

  53. Bickers MJ. Does verbal encouragement work? The effect of verbal encouragement on a muscular endurance task. Clin Rehabil. 1993;7(3):196–200.

    Article  Google Scholar 

  54. Binboga E, Tok S, Catikkas F, Guven S, Dane S. The effects of verbal encouragement and conscientiousness on maximal voluntary contraction of the triceps surae muscle in elite athletes. J Sports Sci. 2013;31(9):982–8.

    Article  PubMed  Google Scholar 

  55. Belanger AY, McComas AJ. Extent of motor unit activation during effort. J Appl Physiol Respir Environ Exerc Physiol. 1981;51(5):1131–5.

    CAS  PubMed  Google Scholar 

  56. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci: Off J Soc Neurosci. 2003;23(23):8432–44.

    CAS  Google Scholar 

  57. Smith AM, Bourbonnais D. Neuronal activity in cerebellar cortex related to control of prehensile force. J Neurophysiol. 1981;45(2):286–303.

    CAS  PubMed  Google Scholar 

  58. Sehm B, Perez MA, Xu B, Hidler J, Cohen LG. Functional neuroanatomy of mirroring during a unimanual force generation task. Cereb Cortex. 2010;20(1):34–45.

    Article  CAS  PubMed  Google Scholar 

  59. Dettmers C, Fink GR, Lemon RN, Stephan KM, Passingham RE, Silbersweig D, et al. Relation between cerebral activity and force in the motor areas of the human brain. J Neurophysiol. 1995;74(2):802–15.

    CAS  PubMed  Google Scholar 

  60. Keisker B, Hepp-Reymond MC, Blickenstorfer A, Meyer M, Kollias SS. Differential force scaling of fine-graded power grip force in the sensorimotor network. Hum Brain Mapp. 2009;30(8):2453–65.

    Article  PubMed  Google Scholar 

  61. Pope P, Wing AM, Praamstra P, Miall RC. Force related activations in rhythmic sequence production. NeuroImage. 2005;27(4):909–18.

    Article  PubMed  Google Scholar 

  62. Spraker MB, Corcos DM, Kurani AS, Prodoehl J, Swinnen SP, Vaillancourt DE. Specific cerebellar regions are related to force amplitude and rate of force development. NeuroImage. 2012;59(2):1647–56.

    Article  CAS  PubMed  Google Scholar 

  63. Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2(9):338–47.

    Article  CAS  PubMed  Google Scholar 

  64. Ohyama T, Nores WL, Murphy M, Mauk MD. What the cerebellum computes. Trends Neurosci. 2003;26(4):222–7.

    Article  CAS  PubMed  Google Scholar 

  65. Rao SM, Mayer AR, Harrington DL. The evolution of brain activation during temporal processing. Nat Neurosci. 2001;4(3):317–23.

    Article  CAS  PubMed  Google Scholar 

  66. Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol. 2004;14(2):225–32.

    Article  CAS  PubMed  Google Scholar 

  67. Meck WH. Neuropsychology of timing and time perception. Brain Cogn. 2005;58(1):1–8.

    Article  PubMed  Google Scholar 

  68. Braitenberg V. Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res. 1967;25:334–46.

    Article  CAS  PubMed  Google Scholar 

  69. Ivry RB, Keele SW, Diener HC. Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res. 1988;73(1):167–80.

    Article  CAS  PubMed  Google Scholar 

  70. Jahanshahi M, Jones CR, Dirnberger G, Frith CD. The substantia nigra pars compacta and temporal processing. J Neurosci: Off J Soc Neurosci. 2006;26(47):12266–73.

    Article  CAS  Google Scholar 

  71. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain: J Neurol. 1998;121(4):561–79.

    Article  Google Scholar 

  72. Manto M-U, Pandolfo M. The cerebellum and its disorders. Cambridge: Cambridge University Press; 2002.

    Google Scholar 

  73. Bares M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res. 2007;180(2):355–65.

    Article  PubMed  Google Scholar 

  74. Chandran V, Pal PK. Essential tremor: beyond the motor features. Parkinsonism Relat Disord. 2012;18(5):407–13.

    Article  PubMed  Google Scholar 

  75. Ullen F, Forssberg H, Ehrsson HH. Neural networks for the coordination of the hands in time. J Neurophysiol. 2003;89(2):1126–35.

    Article  PubMed  Google Scholar 

  76. Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws. J Neurophysiol. 1999;82(1):103–14.

    CAS  PubMed  Google Scholar 

  77. Lewis P, Miall R. Brain activation patterns during measurement of sub-and supra-second intervals. Neuropsychologia. 2003;41(12):1583–92.

    Article  CAS  PubMed  Google Scholar 

  78. Xu D, Liu T, Ashe J, Bushara KO. Role of the olivo-cerebellar system in timing. J Neurosci. 2006;26(22):5990–5.

    Article  CAS  PubMed  Google Scholar 

  79. Perrett SP, Ruiz BP, Mauk MD. Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci. 1993;13(4):1708–18.

    CAS  PubMed  Google Scholar 

  80. Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, et al. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci. 2005;25(15):3919–31.

    Article  CAS  PubMed  Google Scholar 

  81. Molinari M, Leggio MG, Thaut MH. The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. Cerebellum. 2007;6(1):18–23.

    Article  PubMed  Google Scholar 

  82. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–65.

    Article  PubMed  Google Scholar 

  83. Stoodley CJ, Stein JF. The cerebellum and dyslexia. Cortex. 2011;47(1):101–16. a journal devoted to the study of the nervous system and behavior.

    Article  PubMed  Google Scholar 

  84. Chen X, Scangos KW, Stuphorn V. Supplementary motor area exerts proactive and reactive control of arm movements. J Neurosci: Off J Soc Neurosci. 2010;30(44):14657–75.

    Article  CAS  Google Scholar 

  85. Dhamala M, Pagnoni G, Wiesenfeld K, Zink CF, Martin M, Berns GS. Neural correlates of the complexity of rhythmic finger tapping. NeuroImage. 2003;20(2):918–26.

    Article  PubMed  Google Scholar 

  86. Lewis PA, Wing AM, Pope PA, Praamstra P, Miall RC. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia. 2004;42(10):1301–12.

    Article  CAS  PubMed  Google Scholar 

  87. van der Gaag C, Minderaa RB, Keysers C. Facial expressions: what the mirror neuron system can and cannot tell us. Soc Neurosci. 2007;2(3–4):179–222.

    Article  PubMed  Google Scholar 

  88. Molenberghs P, Cunnington R, Mattingley JB. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neurosci Biobehav Rev. 2012;36(1):341–9.

    Article  PubMed  Google Scholar 

  89. Nioche C, Cabanis EA, Habas C. Functional connectivity of the human red nucleus in the brain resting state at 3T. AJNR Am J Neuroradiol. 2009;30(2):396–403.

    Article  CAS  PubMed  Google Scholar 

  90. Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage. 1999;10(3 Pt 1):233–60.

    Article  CAS  PubMed  Google Scholar 

  91. Schmahmann JD, Caplan D. Cognition, emotion and the cerebellum. Brain: J Neurol. 2006;129(Pt 2):290–2.

    Google Scholar 

  92. Glickstein M, May 3rd JG, Mercier BE. Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol. 1985;235(3):343–59.

    Article  CAS  PubMed  Google Scholar 

  93. Palesi F, Tournier JD, Calamante F, Muhlert N, Castellazzi G, Chard D, et al. Contralateral cerebello-thalamo-cortical pathways with prominent involvement of associative areas in humans in vivo. Brain Struct Funct. 2015;220(6):3369–84.

    Article  PubMed  Google Scholar 

  94. Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009;10(9):670–81.

    Article  CAS  PubMed  Google Scholar 

  95. Brochu G, Maler L, Hawkes R. Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol. 1990;291(4):538–52.

    Article  CAS  PubMed  Google Scholar 

  96. Sugihara I. Compartmentalization of the deep cerebellar nuclei based on afferent projections and aldolase C expression. Cerebellum. 2011;10(3):449–63.

    Article  CAS  PubMed  Google Scholar 

  97. Voogd J. Cerebellar zones: a personal history. Cerebellum. 2011;10(3):334–50.

    Article  PubMed  Google Scholar 

  98. Voogd J, Ruigrok TJ. The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J Neurocytol. 2004;33(1):5–21.

    Article  PubMed  Google Scholar 

  99. Oscarsson O. Functional units of the cerebellum-sagittal zones and microzones. Trends Neurosci. 1979;2:143–5.

    Article  Google Scholar 

  100. Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Neurosci. 1998;21(9):370–5.

    Article  CAS  PubMed  Google Scholar 

  101. Sugihara I, Shinoda Y. Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. J Neurosci. 2004;24(40):8771–85.

    Article  CAS  PubMed  Google Scholar 

  102. De Zeeuw CI, Hoebeek FE, Bosman LW, Schonewille M, Witter L, Koekkoek SK. Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci. 2011;12(6):327–44.

    Article  PubMed  CAS  Google Scholar 

  103. Voogd J. Comparative aspects of the structure and fibre connexions of the mammalian cerebellum. Prog Brain Res. 1966;25:94–134.

    Article  Google Scholar 

  104. Ruigrok TJ. Ins and outs of cerebellar modules. Cerebellum. 2011;10(3):464–74.

    Article  PubMed  Google Scholar 

  105. Pijpers A, Apps R, Pardoe J, Voogd J, Ruigrok TJ. Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones. J Neurosci. 2006;26(46):12067–80.

    Article  CAS  PubMed  Google Scholar 

  106. Voogd J, Pardoe J, Ruigrok TJ, Apps R. The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J Neurosci. 2003;23(11):4645–56.

    CAS  PubMed  Google Scholar 

  107. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.

    Article  CAS  PubMed  Google Scholar 

  108. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–15.

    Article  CAS  PubMed  Google Scholar 

  110. Habas C, Cabanis EA. Cortical projections to the human red nucleus: a diffusion tensor tractography study with a 1.5-T MRI machine. Neuroradiology. 2006;48(10):755–62.

    Article  PubMed  Google Scholar 

  111. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci: Off J Soc Neurosci. 2009;29(26):8586–94.

    Article  CAS  Google Scholar 

  112. Ito M. The modifiable neuronal network of the cerebellum. Jpn J Physiol. 1984;34(5):781–92.

    Article  CAS  PubMed  Google Scholar 

  113. Eccles JC. Circuits in the cerebellar control of movement. Proc Natl Acad Sci U S A. 1967;58(1):336–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Habas C, Guillevin R, Abanou A. In vivo structural and functional imaging of the human rubral and inferior olivary nuclei: a mini-review. Cerebellum. 2010;9(2):167–73.

    Article  PubMed  Google Scholar 

  115. Watanabe M, Sakagami M. Integration of cognitive and motivational context information in the primate prefrontal cortex. Cereb Cortex. 2007;17 Suppl 1:i101–9.

    Article  PubMed  Google Scholar 

  116. Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26(4):317–30.

    Article  PubMed  Google Scholar 

  117. Mogenson GJ, Jones DL, Yim CY. From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol. 1980;14(2–3):69–97.

    Article  CAS  PubMed  Google Scholar 

  118. Schmahmann JD, Pandya DN. Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex. 2008;44(8):1037–66. a journal devoted to the study of the nervous system and behavior.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A. 2010;107(18):8452–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.

    Article  CAS  PubMed  Google Scholar 

  121. Ichinohe N, Mori F, Shoumura K. A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res. 2000;880(1–2):191–7.

    Article  CAS  PubMed  Google Scholar 

  122. Pelzer EA, Hintzen A, Goldau M, von Cramon DY, Timmermann L, Tittgemeyer M. Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci. 2013;38(8):3106–14.

    Article  PubMed  Google Scholar 

  123. Grafton ST, Hazeltine E, Ivry R. Functional mapping of sequence learning in normal humans. J Cogn Neurosci. 1995;7(4):497–510.

    Article  CAS  PubMed  Google Scholar 

  124. Rauch SL, Baer L, Cosgrove GR, Jenike MA. Neurosurgical treatment of Tourette’s syndrome: a critical review. Compr Psychiatry. 1995;36(2):141–56.

    Article  CAS  PubMed  Google Scholar 

  125. Krinke GJ, Classen W, Rauch M, Weber E. Optimal conduct of the neuropathology evaluation of organophosphorus induced delayed neuropathy in hens. Exp Toxicol Pathol: Off J Gesellschaft fur Toxikologische Pathologie. 1997;49(6):451–8.

    Article  CAS  Google Scholar 

  126. Daw ND, Doya K. The computational neurobiology of learning and reward. Curr Opin Neurobiol. 2006;16(2):199–204.

    Article  CAS  PubMed  Google Scholar 

  127. O’Doherty JP, Hampton A, Kim H. Model-based fMRI and its application to reward learning and decision making. Ann N Y Acad Sci. 2007;1104:35–53.

    Article  PubMed  Google Scholar 

  128. Hui KK, Liu J, Marina O, Napadow V, Haselgrove C, Kwong KK, et al. The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI. NeuroImage. 2005;27(3):479–96.

    Article  PubMed  Google Scholar 

  129. Stoodley CJ, Valera EM, Schmahmann JD. An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol. 2010;23(1–2):65–79.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Marien P, Beaton A. The enigmatic linguistic cerebellum: clinical relevance and unanswered questions on nonmotor speech and language deficits in cerebellar disorders. Cerebellum Ataxias. 2014;1:12.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. 2003;19(4):1273–302.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the participants that gave their time to take part in this study and everybody who has contributed to its realization

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chama Belkhiria.

Ethics declarations

The study was approved by the local ethics committee.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkhiria, C., Driss, T., Habas, C. et al. Exploration and Identification of Cortico-Cerebellar-Brainstem Closed Loop During a Motivational-Motor Task: an fMRI Study. Cerebellum 16, 326–339 (2017). https://doi.org/10.1007/s12311-016-0801-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0801-1

Keywords

Navigation