Skip to main content
Log in

NMR-based metabolomic analysis of wild, greenhouse, and in vitro regenerated shoots of Cymbopogon schoenanthus subsp. proximus with GC–MS assessment of proximadiol

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Cymbopogon schoenanthus subsp. proximus is a wild plant distributed in subtropical and east Africa extending from the north to the southern parts of Egypt. Widely used in folk medicine, it is the source of the diuretic sesquiterpene proximadiol. Nuclear magnetic resonance metabolomic analysis of polar extracts of shoots from wild, greenhouse, somatic embryos, and direct and indirect organogenic in vitro cultures was carried out. Metabolic profiling yielded 39 compounds, of which common metabolites were 15 (38.4%). Unique metabolites were trehalose (2.5%) in the wild plants, 2-hydroxylisobutyrate, galactarate and tyrosine (7.6%) in indirect organogenic shoots. Tartrate was found only in direct regenerated shoots (2.5%). Metabolites identified in greenhouse and embryogenic shoots showed no unique compounds. Multivariate analysis revealed significant differences between all tested shoots. 4-aminobutyrate, alanine, glutamine, glucose, fructose, and sucrose were the most significantly different metabolites. Proximadiol was identified and quantitatively measured from the non-polar extract of different types of shoots using gas chromatography and mass spectrometry (GC–MS). Concentrations ranged from 3.6 ± 0.03 to 198.6 ± 7.2 µg/100 mg dry weight in regenerated shoots from somatic embryogenesis and in wild plant shoots, respectively. Direct organogenesis yielded the highest in vitro concentration (20.3 ± 0.5 µg/100 mg dry weight). This study reported the metabolic profiling of C. schoenanthus polar extract and identified primary metabolites that are unique to the wild type and shoots regenerated from different in vitro cultures. Proximadiol was quantified and the in vitro culture system yielding the highest concentration relative to the wild plant was identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Salam AM, Chowdhury K, El-Bakry AA (2015) Effect of sugar types, culture age, concentrations of 2, 4-D and sucrose on somatic embryogenesis of Cymbopogon schoenanthus subsp. proximus. Plant Tissue Cult Biotechnol 25:51–62

    Article  Google Scholar 

  • Abdel-Salam AM, Chowdhury K, El-Bakry AA (2017) Micropropagation through in vitro tillering from seed culture of the medicinal plant Cymbopogon schoenanthus subsp. proximus. Asian J Appl Sci 5:31–40

    Google Scholar 

  • Adam KP, Thiel R, Zapp J, Becker H (1998) Involvement of the mevalonic acid pathway and the glyceraldehydes–pyruvate pathway in terpenoid biosynthesis of the liverworts Ricciocarpos natans and Conocephalum conicum. Arch Biochem Biophys 354:181–187

    Article  CAS  PubMed  Google Scholar 

  • Apio HB, Alicai T, Baguma Y, Mukasa SB, Bua A, Taylor N (2015) Production of friable embryogenic callus and regeneration of Ugandan farmer-preferred cassava genotypes. Afr J Biotechnol 22:1854–1864

    Google Scholar 

  • Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-d-xylulose in higher plants by intra-molecular skeletal rearrangement. Proc Natl Acad Sci USA 94:10600–10605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aurisano N, Bertani A, Reggiani R (1995) Anaerobic accumulation of 4-aminobutyrate in rice seedlings; causes and significance. Phytochemistry 38:1147–1150

    Article  CAS  Google Scholar 

  • Barbosa LCA, Pereira UA, Martinazzo AP, Maltha CRA, Teixeira RR, Melo EC (2008) Evaluation of the chemical composition of Brazilian commercial Cymbopogon citratus (D.C.) Stapf samples. Molecules 13:1864–1874

    Article  CAS  PubMed  Google Scholar 

  • Barnett NM, Naylor AW (1966) Amino acid and protein metabolism in Bermuda grass during water stress. Plant Physiol 44:1222–1230

    Article  Google Scholar 

  • Baruah A, Bordoloi DN (1989) High frequency plant regeneration of Cymbopogon martini (Roxb.)Wats. by somatic embryogenesis and organogenesis. Plant Cell Rep 8:483–485

    Article  CAS  PubMed  Google Scholar 

  • Batanouny KH, Abou-Tabl S, Shabana M, Soliman F (1999) Wild medicinal plants in Egypt. An inventory to support conservation and sustainable use. Academy of Scientific Research and Technology, Cairo

    Google Scholar 

  • Bhattacharya S, Bandopadhtay TK, Ghosh PD (2009) Somatic embryogenesis in Cymbopogon pendulus and evaluation of clonal fidelity of regenerates using ISSR marker. Sci Hortic 123:505–513

    Article  Google Scholar 

  • Bhosale UP, Dubhashi SV, Rathod HP (2011) In vitro shoot multiplication in different species of banana. Asian J Plant Sci Res 1:23–27

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  CAS  PubMed  Google Scholar 

  • Boulos L (1983) Medicinal plants of North Africa. Reference Publication Inc., Michigan

    Google Scholar 

  • Boulos L (1999) Flora of Egypt. Al Hadara publishing, Cairo

    Google Scholar 

  • Burg MB, Ferraris JD (2009) Intracellular organic osmolytes: function and regulation. J Biol Chem 283:7309–7313

    Article  Google Scholar 

  • Campo G, Berregi L, Caracena R, Zuriarrain J (2010) Quantitative determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl) furfural in soluble coffees by 1H NMR spectrometry. Talanta 81:367–371

    Article  PubMed  Google Scholar 

  • Cho Y, Lightfoot DA, Wood AJ (1999) Trigonelline concentrations in salt stressed leaves of cultivated Glycine max. Phytochemistry 52:1235–1238

    Article  CAS  Google Scholar 

  • Debnath M, Malik CP, Bisen PS (2006) Micropropagation: a tool for the production of high quality plant-based medicines. Curr Pharm Biotechnol 7:33–49

    Article  CAS  PubMed  Google Scholar 

  • DeBolt S, Cook DR, Ford CM (2006) l-Tartaric acid synthesis from vitamin C in higher plants. Proc Nat Acad Sci 6:5608–5613

    Article  Google Scholar 

  • Dey T, Bhattacharya S, Ghosh PD (2010) Somatic embryogenesis from rhizome explants of Cymbopogon winterianus. Biol Plant 54:325–328

    Article  Google Scholar 

  • Eisenreich W, Menhard B, Hyland PJ, Zenk MH, Bacher A (1996) Studies on the biosynthesis of taxol: the taxane carbon skeleton is not of mevalonoid origin. Proc Natl Acad Sci USA 93:6431–6436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Askary HI, Meselhy MR, Galal AM (2003) Sesquiterpenes from Cymbopogon proximus. Molecules 8:670–677

    Article  CAS  Google Scholar 

  • El-Bakry AA, Abelsalam AM (2012) Regeneration from embryogenic callus and suspension cultures of the wild medicinal plant Cymbopogon schoenanthus. Afr J Biotechnol 11:10098–10107

    CAS  Google Scholar 

  • Farag MA, Porzel A, Schmidt J, Wessjohann LA (2012) Metabolite profiling and fingerprinting of commercial cultivars of Humulus lupulus L. (hop): a comparison of MS and NMR methods in metabolomics. Metabolomics 8:492–507

    Article  CAS  Google Scholar 

  • Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting volatile and essential oil production in plants: volatile components and essential oils. Flavour Fragr J 23:213–226

    Article  CAS  Google Scholar 

  • Filipecki M, Wiśniewski A, Yin Z, Malepszy S (2005) The heritable changes in metabolic profiles of plants regenerated in different types of in vitro culture. Plant Cell Tissue Organ Cult 82:349–356

    Article  CAS  Google Scholar 

  • Fowler DJ, Hamilton JTG, Humphrey AJ, O’Hagan D (1999) Plant terpene biosynthesis. The biosynthesis of linalyl acetate in Mentha citrata. Tetrahedron Lett 40:3803–3806

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension culture of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Garcia AB, Engler JA, Lyer S, Gerats T, Montagu MV, Gaplan AB (1997) Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol 11:159–169

    Article  Google Scholar 

  • Ghasempour HR, Gaff DF, Williams RPW, Gianello RD (1998) Contents of sugars in leaves of drying desiccation tolerant flowering plants, particularly grasses. Plant Growth Regul 24:185–191

    Article  CAS  Google Scholar 

  • Goodpaster AM, Kennedy MA (2011) Quantification and statistical significance analysis of group separation in NMR-based metabolomics studies. Chemometr Intell Lab Syst 109:162–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunathilake PMPC, Abayagunawardhana N, Wilamasiri S, Sangakkara UR, Eeswara JP (2008) Direct shoot organogenesis from nodal and leaf explants of Munronia pinnata (Wall.)Theob: a valuable medicinal plant. Trop Agric Res 20:213–225

    Google Scholar 

  • Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC–MS and LC/MS. J Exp Bot 56:219–243

    Article  CAS  PubMed  Google Scholar 

  • Hamden K, Bengara A, Amri Z, Elfeki A (2013) Experimental diabetes treated with trigonelline: effect of key enzymes related to diabetes and hypertension, β-cell and live function. Mol Cell Biochem 381:85–94

    Article  CAS  PubMed  Google Scholar 

  • Henry C, Bledsoe SW, Siekman A, Kollman A, Waters BM, Feil R, Stitt M, Lagriminin LM (2014) The trehalose pathway in maize: conservation and gene regulation in response to the diurnal cycle and extended darkness. J Exp Bot 65:5959–5973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa N, Okauchi R, Miura Y, Yagasaki K (2005) Anti-invasive activity of niacin and trigonelline against cancer cells. Biosci Biotechnol Biochem 69:653–658

    Article  CAS  PubMed  Google Scholar 

  • Hirano H, Sakuta M, Komamine A (1992) Inhibition by cytokinin of the accumulation of betacyanin in suspension cultures of Phytolacca americana. Z Naturforsch C 47:705–710

    CAS  Google Scholar 

  • Iraqi D, Tremblay FM (2001) Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J Exp Biol 52:2301–2311

    CAS  Google Scholar 

  • Jackson MB (2005) Aeration stress in plant tissue cultures. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 459–473

    Chapter  Google Scholar 

  • Jueun L, Youngae J, Jeoung-Hwa S, Ho KK, Byeong CM, Do HR, Geum-Sook H (2014) Secondary metabolite profiling of Curcuma species grown at different locations using GC-TOF and UPLC/Q-TOF MS. Molecules 19:9535–9551

    Article  Google Scholar 

  • Kato-Noguchi H, Ohashi C (2006) Effects of anoxia on amino acid levels in rice coleoptiles. Plant Prod Sci 9:383–387

    Article  CAS  Google Scholar 

  • Khan AM, Abbasi BH, Ali H, Ali M, Adil M, Hussain I (2015) Temporal variations in metabolite profiles at different growth phases during somatic embryogenesis of Silybum marianum L. Plant Cell Tissue Organ Cult 120:127–139

    Article  CAS  Google Scholar 

  • Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomics analysis of plants. Nat Protoc 5:536–549

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Choi YH, Verpoorte R (2011) NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol 29:269–275

    Article  Google Scholar 

  • Krishnan P, Kruger NJ, Ratcliffe RG (2004) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255–265

    Article  PubMed  Google Scholar 

  • Kumar A, Shukla A (2014) GC/MS analysis of essential oil isolated from the roots of Cymbopogon Winterianus Jowitt. J Chem Chem Sci 4:35–41

    Google Scholar 

  • Li Z, Zhi H, Zhang F, Sun H, Zhang L, Jia J, Xing J, Qin X (2013) Metabolomic profiling of the antitussive and expectorant plant Tussilago farfara L. by nuclear magnetic resonance spectroscopy and multivariate data analysis. J Pharm Biomed Anal 75:158–164

    Article  CAS  PubMed  Google Scholar 

  • Locksley HD, Fayez MBE, Radwan AS, Chari VM, Cordell GA, Wagner H (1982) Constituents of local plants XXV, constitution of the antispasmodic principle of Cymbopogon proximus. Planta Med 45:20–22

    Article  CAS  PubMed  Google Scholar 

  • Loewus FA, Loewus MW (1987) Biosynthesis and metabolism of ascorbic-acid in plants. CRC Crit Rev Plant Sci 5:101–119

    Article  CAS  Google Scholar 

  • Machado ART, Lage GA, Medeiros FS, Filho JDS, Pimenta LPS (2013) Quantitative analysis of trigonelline in some Annona species by proton NMR spectroscopy. Nat Prod Bioprospect 3:158–160

    Article  CAS  PubMed Central  Google Scholar 

  • Mahmud I, Thapaliya M, Boroujerdi A, Chowdhury K (2014) NMR-based metabolomics study of the biochemical relationship between sugarcane callus tissues and their respective nutrient culture media. Anal Bioanal Chem 406:5997–6005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur AK, Ahuja PS, Pandey B, Kukreja AK, Mandal S (1988) Screening and evaluation of somaclonal variations for quantitative and qualitative traits in an aromatic grass Cymbopogon winterianus Jowitt. Plant Breed 101:321–334

    Article  Google Scholar 

  • Mei X, Chen Y, Zhang L, Fu X, Weil Q, Grierson D, Zhou Y, Huang Y, Dong F, Yang Z (2016) Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses. Sci Rep 6:1–11

    Article  Google Scholar 

  • Mokhtari A, Alizadeh H, Samadi BY, Omidi M, Otroshy M, Moeini Z (2013) Effect of plant growth regulators on direct shoot regeneration of wheat immature embryonic Explants. J Agric Eng Biotechnol 1:74–80

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nalawades M, Tsay H (2004) In vitro propagation of some important Chinese medicinal plants and their sustainable usage. In Vitro Cell Dev Biol Plant 40:143–154

    Article  Google Scholar 

  • Öman T, Tessem M, Bathen T, Bertilsson H, Angelsen A, Hedenström M, Andreassen T (2014) Identification of metabolites from 2D 1H–13C HSQC NMR using peak correlation plots. BMC Bioinform 15:413–420

    Article  Google Scholar 

  • Padalia RC, Verma RS, Chanotiya CS, Anju Y (2011) Chemical fingerprinting of the fragrant volatiles of nineteen Indian cultivars of Cymbopogon Spreng. (Poaceae). Rec Nat Prod 5:290–299

    CAS  Google Scholar 

  • Palama TL, Menard P, Fock I, Choi YH, Bourdon E, Govinden-Soulange J, Bahut M, Payet B, Verpoorte R, Kodja H (2010) Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage. BMC Plant Biol 10:82–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  CAS  PubMed  Google Scholar 

  • Radušienė J, Karpavičienė B, Stanius Z (2012) Effect of external and internal factors on secondary metabolites accumulation in St. John’s worth. Bot Lith 18:101–108

    Google Scholar 

  • Radwan AS (1975) An analytical method for proximadiol, the active principle of Cymbopogon proximus. Planta Med 27:93–97

    Article  CAS  PubMed  Google Scholar 

  • Raina VK, Srivastava SK, Aggarwal KK, Syamasundar KV, Khanuja SPS (2003) Essential oil composition of Cymbopogon martinii from different places in India. Flavour Fragr J 18:312–315

    Article  CAS  Google Scholar 

  • Ramírez-Mosqueda MA, Iglesias-Andreu LG (2015) Indirect organogenesis and assessment of somaclonal variation in plantlets of Vanilla planifolia Jacks. Plant Cell Tissue Organ Cult 123:657–664

    Article  Google Scholar 

  • Reggiani R, Aurisano N, Mattana M, Bertani A (1993) ABA induce 4-aminobutyrate accumulation in wheat seedlings. Phytochemistry 3:605–609

    Article  Google Scholar 

  • Rohloff J (2015) Analysis of phenolic and cyclic compounds in plants using derivatization techniques in combination with GC–MS-based metabolite Profiling. Molecules 20:3431–3462

    Article  CAS  PubMed  Google Scholar 

  • Salvi ND, George L, Eapen S (2001) Plant regeneration from leaf base callus of turmeric and random amplified polymorphic DNA analysis of regenerated plants. Plant Cell Tissue Organ Cult 66:113–119

    Article  CAS  Google Scholar 

  • Sar SV, Kim HK, Meissner A, Verpoorte R, Choi YH (2013) Nuclear magnetic resonance spectroscopy for plant metabolite profiling. In: Weckwerth W, Kahl G (eds) The handbook of plant metabolomics. Wiley-VCH Verlag GmbH & Co., Weinheim, pp 57–76

    Google Scholar 

  • Sarin R (2003) Enhancement of optimum alkaloid production in callus culture of Papaver rhoeas Linn. Indian J Biotechnol 2:271–272

    CAS  Google Scholar 

  • Selim SA (2011) Chemical composition, antioxidant and antimicrobial activity of the essential oil and methanol extract of the Egyptian lemongrass Cymbopogon proximus Stapf. Grasas Aceites 62:55–61

    Article  CAS  Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  Google Scholar 

  • Tramontano WA, Jouve D (1997) Trigonelline accumulation in salt-stressed legumes and the role of other osmoregulators as cell cycle regulators. Phytochemistry 44:1037–1040

    Article  CAS  Google Scholar 

  • Tzin V, Galili G (2010) New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant 3:956–972

    Article  CAS  PubMed  Google Scholar 

  • Ubalua AO, Mbanaso E (2014) Somatic embryogenesis n two Nigerian cassava cultivars (Sandpaper and TMS 60444). J Evol Biol Res 6:9–12

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Wang DK, Pei KM, Fu YP, Sun ZX, Li SJ, Liu HQ, Tang K, Han B, Tao YZ (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Southam AD, Hines A, Viant MR (2008) High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem 372:204–212

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0-a comprehensive server for metabolomics data analysis. Nucleic Acids Res 40:W127–W133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanga S, ShinbY Hyuna S, Choa S, Bangb K, Leec D, Choid SP, Cho H (2012) NMR-based metabolic profiling and differentiation of ginseng roots according to cultivation ages. J Pharm Biomed Anal 58:19–26

    Article  Google Scholar 

  • Zhou J, Chan L, Zhou S (2012) Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem 19:3523–3531

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Culture Affairs and Missions Sector, Ministry of Higher Education, Egypt. Authors are also grateful for SC-INBRE (2 P20 GM103499) and NSF HBCU-UP (HRD-1332516) for providing NMR facility support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezue Boroujerdi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelsalam, A., Mahran, E., Chowdhury, K. et al. NMR-based metabolomic analysis of wild, greenhouse, and in vitro regenerated shoots of Cymbopogon schoenanthus subsp. proximus with GC–MS assessment of proximadiol. Physiol Mol Biol Plants 23, 369–383 (2017). https://doi.org/10.1007/s12298-017-0432-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-017-0432-0

Keywords

Navigation