Skip to main content

Advertisement

Log in

Protective Role of Black Tea Flavonoids Against Ethanol-Induced Gastropathy via Matrix Metalloproteinase Pathway

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Tea polyphenols are known to prevent various ailments like cancer, atherosclerosis, hypertension and diabetes. Our study aimed at to decipher the gastroprotective effect of aqueous black tea extract (BTE) against ethanol-induced gastric damage and the role of BTE in modulating MMP-9 activity and expression, both in vivo and in vitro. The protective role of BTE was assessed in Sprague–Dawley rats after inducing damage with 70% ethanol. Human gastric adenocarcinoma cells (AGS) were treated with ethanol in ex vivo experiment. MMP-9 activity and expression were investigated through gelatin zymography and western blotting. Reactive oxygen species (ROS) generation was also studied by fluorescence spectroscopy and confocal microscopy, with or without treatment of BTE both in vivo and in vitro experiments. In addition, the effect of citric acid treated BTE (cBTE), which mimics lemon tea, was examined on ethanol-induced gastropathy. BTE exhibited antiulcer activity through reduction of glutathione depletion, lipid peroxidation, protein oxidation, ROS production and inflammatory cell infiltration in rat gastric tissues. In addition, BTE significantly inhibited synthesis and secretion of proMMP-9 both in vivo and in vitro. The mitochondrial enzymes succinate dehydrogenase and NADH oxidase in rat gastric tissues were downregulated by BTE while protecting gastric ulcer. Citric acid addition to BTE was observer to enrich the lead compound, catechin. Interestingly, cBTE showed higher anti-ulcer activity than the untreated one. BTE shows protective role against ethanol-induced gastric ulcer in rats through scavenging ROS and downregulating proMMP-9 activity. While cBTE shows better protection due to enrichment of catechin and removal of tannins in tea extract leading to enhanced inhibitory role on proMMP-9 activity and ROS production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BTE:

Black tea extract

cBTE:

Citric acid treated black tea extract

ROS:

Reactive oxygen species

MMP:

Matrix metalloproteinase

ECM:

Extracellular matrix

SDH:

Succinate dehydrogenase

TIMP:

Tissue inhibitor of metalloproteinases

References

  1. El-Moselhy MA, Abdel-Hamid NM, Abdel-Raheim SR. Gastroprotective effect of nicorandil in indomethacin and alcohol-induced acute ulcers. Appl Biochem Biotechnol. 2009;152(3):449–59.

    Article  CAS  PubMed  Google Scholar 

  2. Shahin M, Konturek JW, Pohle T, Schuppan D, Herbst H, Domschke W. Remodeling of extracellular matrix in gastric ulceration. Microsc Res Tech. 2001;53(6):396–408.

    Article  CAS  PubMed  Google Scholar 

  3. Chakraborty S, Stalin S, Das N, Choudhury ST, Ghosh S, Swarnakar S. The use of nano-quercetin to arrest mitochondrial damage and MMP-9 upregulation during prevention of gastric inflammation induced by ethanol in rats. Biomaterials. 2011;33(10):2991–3001.

    Article  Google Scholar 

  4. Swarnakar S, Mishra A, Ganguly K, Sharma AV. Matrix metalloproteinase-9 activity and expression is reduced by melatonin during prevention of ethanol-induced gastric ulcer in mice. J Pineal Res. 2007;43(1):56–64.

    Article  CAS  PubMed  Google Scholar 

  5. Ganguly K, Kundu P, Banerjee A, Reiter RJ, Swarnakar S. Hydrogen peroxide-mediated downregulation of matrix metalloprotease-2 in indomethacin-induced acute gastric ulceration is blocked by melatonin and other antioxidants. Free Rad Biol Med. 2006;41(6):911–25.

    Article  CAS  PubMed  Google Scholar 

  6. Robbins SL, Coltran RS, Healing Kumar V. Pathologic bases of disease. Philadelphia: WB Saunders; 1984. p. 816–20.

    Google Scholar 

  7. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodeling. Nat Rev Mol Cell Biol. 2007;8(3):221–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guedez L, Lim MS, Stetler-Stevenson WG. The role of metalloproteinases and their inhibitors in hematological disorders. Crit Rev Oncog. 1996;7(3–4):205–25.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, McCluskey K, Fujii K, Wahl LM. Differential regulation of monocyte matrix metalloproteinase and TIMP-1 production by TNF-alpha, granulocyte-macrophage CSF, and IL-1beta through prostaglandin-dependent and -independent mechanisms. J Immunol. 1998;161(6):3071–6.

    CAS  PubMed  Google Scholar 

  11. Gordon GM, Ledee DR, Feuer W, Fini ME. Cytokines and signaling pathways regulating matrix metalloproteinase-9 (MMP-9) expression in corneal epithelial cells. J Cell Physiol. 2009;221(2):402–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lempinen M, Inkinen K, Wolff H, Ahonen J. Matrix Metalloproteinases 2 and 9 in Indomethacin-Induced Rat Gastric Ulcer. Eur Surg Res. 2000;32(3):169–76.

    Article  CAS  PubMed  Google Scholar 

  13. Singh LP, Mishra A, Saha D, Swarnakar S. Doxycycline blocks gastric ulcer by regulating matrix metalloproteinase-2 activity and oxidative stress. World J Gastroenterol. 2011;17(28):3310–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Greenlee KJ, Werb Z, Kheradmand F. Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev. 2007;87(1):69–98.

    Article  CAS  PubMed  Google Scholar 

  15. Furuichi K, Hisada Y, Shimizu M, Okumura T, Kitagawa K, Yoshimoto K, et al. Matrix metalloproteinase-2 (MMP-2) and membrane-type 1 MMP (MT1-MMP) affect the remodeling of glomerulosclerosis in diabetic OLETF rats. Nephrol Dial Transplant. 2011;26(10):3124–31.

    Article  CAS  PubMed  Google Scholar 

  16. Matsui H, Shimokawa O, Kaneko T, Nagano Y, Rai K, Hyodo I. The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine. J Clin Biochem Nutr. 2011;48(2):107–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wiseman SA, Balentine DA, Frei B. Antioxidants in tea. Crit Rev Food Sci Nutr. 1997;37(8):705–18.

    Article  CAS  PubMed  Google Scholar 

  18. Rietveld A, Wiseman S. Antioxidant effects of tea: evidence from human clinical trials. J Nutr. 2003;133(10):3285–92.

    Article  Google Scholar 

  19. Frei B, Higdon JV. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr. 2003;133(10):3275S–84S.

    Article  CAS  PubMed  Google Scholar 

  20. Leung LK, Su Y, Chen R, Huang Y, Chen ZY. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr. 2001;131(9):2248–51.

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh MN. Fundamentals of experimental pharmacology. 3rd ed. Tysons Corner: Hilton and Co; 2005. p. 190–7.

    Google Scholar 

  22. Swarnakar S, Ganguly K, Kundu P, Banerjee A, Maity P, Sharma AV. Curcumin regulates expression and activity of matrix metalloproteinase 9 and 2 during prevention and healing of indomethacin-induced gastric ulcer. J Biol Chem. 2005;280(10):9409–15.

    Article  CAS  PubMed  Google Scholar 

  23. Twentyman PR, Luscombe MA. Study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer. 1987;56(3):279–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nishitani E, Sagesaka YM. Simultaneous determination of catechins, caffeine and other phenolic compounds in tea using new HPLC method. J Food Compos Anal. 2004;17(5):675–775.

    Article  CAS  Google Scholar 

  25. Ghosh S, Chakraborty R, Majumdar S, Raychaudhuri U. Identification of ultraviolet radiation induced gallic acid and caffeic acid formation in palm juice (Borassus flabellifer) by HPLC & mass spectra technique. J Food Meas Charact. 2014;8(3):218–24.

    Article  Google Scholar 

  26. Ho Row K, Jin Y. Recovery of catechin compounds from Korean tea by solvent extraction. Bioresour Technol. 2006;97(5):790–3.

    Article  Google Scholar 

  27. Recknagel RO, Glende EA Jr. Spectrophotometric detection of lipid conjugated dienes. Methods Enzymol. 1984;105:331–7.

    Article  CAS  PubMed  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with folin phenol reagent. J Biol Chem. 1951;193:265–75.

    CAS  PubMed  Google Scholar 

  29. Singh LP, Kundu P, Ganguly K, Mishra A, Swarnakar S. Novel role of famotidine in downregulation of matrix metalloproteinase-9 during protection of ethanol-induced acute gastric ulcer. Free Rad Biol Med. 2007;43(2):289–99.

    Article  CAS  Google Scholar 

  30. Davila JC, Davis PS, Acosta D. Changes in glutathione and cellular energy as potential mechanisms of papaverine-induced hepatotoxicity in vitro. Toxicol Appl Pharmacol. 1991;108(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  31. Navarro A, Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol. 2004;287(5):1244–9.

    Article  Google Scholar 

  32. Hamaishi K, Kojima R, Hahm KB. Anti-ulcer effect of tea catechin in rats. Biol Pharm Bull. 2006;29(11):2206–13.

    Article  CAS  PubMed  Google Scholar 

  33. Lee SY, Shin YW, Hahm KB. Phytoceuticals: mighty but ignored weapons against Helicobacter pylori infection. J Dig Dis. 2008;9(3):129–39.

    Article  CAS  PubMed  Google Scholar 

  34. Galvin GB, Szabo S. Experimental gastric mucosal injury: laboratory models reveal mechanisms of pathogenesis and new therapeutic strategies. FASEB J. 1992;6(3):825–31.

    Article  Google Scholar 

  35. Loguercio C, Nardi G, Romano M. Glutathione prevents ethanol induced gastric mucosal damage and depletion of sulfydryl compounds in humans. Gut. 1993;34(2):161–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoshikawa T, Naito Y, Kishi A, Tomii T, Kaneko T, Linuma S, et al. Role of active oxygen, lipid peroxidation, and antioxidants in the pathogenesis of gastric mucosal injury induced by indomethacin in rats. Gut. 1993;34(6):732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nicoue EE, Savard S, Belkacemi K. Anthocyanins in wild blueberries of Quebec: extraction and identification. J Agric Food Chem. 2007;55(14):5626–35.

    Article  CAS  PubMed  Google Scholar 

  38. Muzolf M, Szymusiak H, Gliszczyn A, Rietjens I, Tyrakowska B. pH-dependent radical scavenging capacity of green tea catechins. J Agric Food Chem. 2008;56(3):816–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed by the CSIR Network Projects HUM (BSC 0119) and INDEPTH (BSC 0111). Mr. Diptadeep Sarkar and Mr. T. Muruganandan are thankfully acknowledged for their assistance in confocal microscopy and scanning electron microscopy (SEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehasikta Swarnakar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raychaudhuri, S., Ghosh, S., Roy, A. et al. Protective Role of Black Tea Flavonoids Against Ethanol-Induced Gastropathy via Matrix Metalloproteinase Pathway. Ind J Clin Biochem 34, 379–394 (2019). https://doi.org/10.1007/s12291-018-0762-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-018-0762-x

Keywords

Navigation