Skip to main content

Advertisement

Log in

Gastroprotective Effect of Nicorandil in Indomethacin and Alcohol-Induced Acute Ulcers

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Despite the fact that dietary habits and lifestyles are incredibly advancing, gastric ulceration is still a terrible complaint. Extensive use of non-steroidal anti-inflammatory drugs (NSAIDs) and alcohol, in addition to stress, are all predisposing factors for ulcers. Most medical treatments are always time consuming and not efficient or satisfactory to the patients. Cardiovascular patients always need NSAIDs, or mostly cannot quit alcohols, while using many cardiovascular drugs. We aim to study a possible benefit of a common nitrogen oxide donor, anti-anginal drug, nicorandil [N-(2-hydroxyethyl) nicotinamide nitrate ester], in managing acute gastric ulcers through studying its effect on some relevant intermediates to ulcerogenesis as lipid peroxidation, tumor necrosis factor-alpha (TNF-α), and nitric oxide (NO). In addition, gastric mucosal histology was studied to pursue the drug effects on tissue level. Our study revealed that both indomethacin and alcohol induced gastric ulcer mainly through up-regulation of gastric mucosal lipid peroxidation, local tissue inflammation, leukocytic infiltration, and necrosis. Both ulcerogens significantly elevated TNF-α and decreased NO, initiating ulcer formation. Nicorandil pretreatment depicted a higher preventive index in indomethacin- (89.8%) and alcohol-induced (77.7%) acute ulceration. On the tissue level, it also protected the gastric mucosa combating leukocyte infiltration and tissue congestion. Nicorandil protected tissue necrosis through decreasing oxidative stress, elevating NO levels, and down-regulating the ulcerogen-induced TNF-α elevation and improved sub-mucosal blood supply. We conclude that nicorandil may be a suitable bimodal treatment for cardiovascular patients who are at high risk of gastric ulcers by using variable analgesics to alleviate possible cardiac pain episodes, and probably frequent doses will offer a more established and long-lasting protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anderson, L. E. (1994). Mosby’s medical, nursing and allied health dictionary. In K. N. Anderson, L. E. Anderson, & W. D. Glaze (p. 656). St Louis: Mosby.

  2. Bose, M., Motghare, V. M., Dakhale, G. N., & Turankar, A. V. (2003). Antiulcer activity of levcromakalim and nicorandil in albino rats: a comparative study. Polish Journal of Pharmacology, 55, 91–95.

    CAS  Google Scholar 

  3. Giust, A. M., Raimondi, M., Ravagnan, G., Sapora, O., & Parasassi, T. (1998). Human cell membrane oxidative damage induced by single and fractional doses of ionizing radiation: a fluorescence spectroscopy study. International Journal of Radiation Biology, 74, 595–605. doi:10.1080/095530098141177.

    Article  Google Scholar 

  4. Kwiecien, S., Brzozowski, T., Konturek, P. C., Pawlik, M. W., Pawlik, W. W., Kwiecien, N., et al. (2004). Gastroprotection by pentoxyifilline against stress-induced gastric damage. Role of lipid peroxidation, antioxidizing enzymes and proinflammatory cytokines. Journal of Physiology and Pharmacology, 55, 337–355.

    CAS  Google Scholar 

  5. Jiang, P., Chang, L., Pan, C. Z., Qi, Y. F., & Tang, C. S. (2005). Protective role of metallothionein in stress induced gastric ulcer in rats. World Journal of Gastroenterology, 11, 2739–2743.

    CAS  Google Scholar 

  6. Shian, W. M., Sasaki, I., Kamiyama, Y., Naito, H., Matsuno, S., & Miyazawa, T. (2000). The role of lipid peroxidation in gastric mucosal lesions induced by water water-immersion-restraint stress in rats. Surgery Today, 30, 40–53. doi:10.1007/PL00010046.

    Article  Google Scholar 

  7. Wei, X. M., Heywood, G. J., Di Girolamo, N., & Thomas, P. S. (2003). Nicorandil inhibits the release of TNF alpha from a lymphocytes. International Immunopharmacology, 3, 1581–1588. doi:10.1016/S1567–5769(03)00176–0.

    Article  CAS  Google Scholar 

  8. Mitsushige, S., Takahisa, F., Naohito, S., Akiko, N., Fang, X., Masayoshi, K., et al. (2007). Different effects of polymorphisms of tumor necrosis factor-alpha and interleukin-1 beta on development of peptic ulcer and gastric cancer. Gastroenterologia y Hepatologia, 22(1), 51–59. doi:10.1111/j.1440–1746.2006.04442.x.

    Article  Google Scholar 

  9. Kwiecien, S., Brzozowski, T., & Konturek, S. J. (2002). Effects of reactive oxygen species on gastric mucosa in various models of mucosal injury. Journal of Physiology and Pharmacology, 53, 39–50.

    CAS  Google Scholar 

  10. Hamaguchi, M., Watanabe, T., Higuchi, K., Tominaga, K., Fujiwara, Y., & Arkawa, T. (2001). Mechanisms and roles of neutrophil infiltration in stress-induced gastric injury in rats. Digestive Diseases and Sciences, 46, 2708–2715. doi:10.1023/A:1012779530004.

    Article  CAS  Google Scholar 

  11. Calatayud, S., Barrachina, D., & Esplugues, J. V. (2001). Nitric oxide: relation to integrity, injury and healing of the gastric mucosa. Microscopy Research and Technique, 53, 325–335. doi:10.1002/jemt.1100.

    Article  CAS  Google Scholar 

  12. Wallace, J. L., & Miller, M. J. (2000). Nitric oxide mucosal defense: a little goes a long way. Gastroenterol, 119, 512–520. doi:10.1053/gast.2000.9304.

    Article  CAS  Google Scholar 

  13. Fox, J. G., Back, P., Dangler, C. A., Whary, M. T., Wang, T. C., Shi, H. N., et al. (2000). Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduce Helicobacter-induced gastric atrophy. Nature Medicine, 6, 536–542. doi:10.1038/75015.

    Article  CAS  Google Scholar 

  14. Griffin, M. R., & Scheiman, J. M. (2001). Prospects for changing the burden of non-steroidal anti-inflammatory drug toxicity. The American Journal of Medicine, 110, 33S–37S. doi:10.1016/S0002–9343(00)00634–3.

    Article  CAS  Google Scholar 

  15. Clinch, D., Banerjee, A. K., Levy, D. W., Ostick, G., & Faragher, E. B. (1987). Non-steroidal anti-inflammatory drugs and peptic ulceration. Journal of the Royal College of Physicians of London, 21(3), 183–187.

    CAS  Google Scholar 

  16. Appleyard, C. B., McCafferty, D. M., Tigley, A. W., Swain, M. G., & Wallace, J. L. (1996). Tumor necrosis factor mediation of NSAID-induced gastric damage: role of leukocyte adherence. American Journal of Physiology. Gastrointestinal and Liver Physiology, 270, G42–G48.

    CAS  Google Scholar 

  17. Bech, P. L., Xavier, R., Lu, N., Nanda, N. N., Dinauer, M., Podolsky, D. K., et al. (2000). Mechanism of NSAID-induced gastrointestinal injury defined using mutant mice. Gastroenterol, 119, 699–705. doi:10.1053/gast.2000.16497.

    Article  Google Scholar 

  18. Swarnakar, S., Mishra, A., Ganguly, K., & Sharma, A. V. (2007). Matrix metalloproteinase-9 activity and expression is reduced by melatonin during prevention of ethanol-induced gastric ulcer in mice. Journal of Pineal Research, 43(1), 56–64. doi:10.1111/j.1600–079X.2007.00443.x.

    Article  CAS  Google Scholar 

  19. Khosla, P., Karan, R. S., & Bhargava, V. K. (2004). Effect of garlic oil on ethanol-induced gastric ulcers in rats. Phytotherapy Research, 18(1), 87–91. doi:10.1002/ptr.1349.

    Article  CAS  Google Scholar 

  20. Sakai, K., Akima, M., Saito, K., Saitoh, M., & Matsubara, S. (2000). Nicorandil metabolism in rat myocardial mitochondria. Journal of Cardiovascular Pharmacology, 35, 723–728. doi:10.1097/00005344–200005000–00007.

    Article  CAS  Google Scholar 

  21. Hedlund, P., Holmquist, F., Hedlund, H., & Andersson, K. E. (1994). Effects of nicorandil on human isolated corpus cavernosum and cavernous artery. The Journal of Urology, 151, 1107–1113.

    CAS  Google Scholar 

  22. Zhou, Q., Satake, N., & Shibata, S. (1995). The inhibitory mechanisms of nicorandil in isolated rat urinary bladder and femoral artery. European Journal of Pharmacology, 273, 153–159. doi:10.1016/0014–2999(94)00685-Z.

    Article  CAS  Google Scholar 

  23. Patel, H. M., Santani, D. D., & Goswami, S. G. (2001). Evaluation of the effects of nicorandil on experimentally induced gastric ulcers. Pharmacol, 63, 154–159. doi:10.1159/000056127.

    Article  CAS  Google Scholar 

  24. Toroudi, H. P., Rahgozar, M., Bakhtarian, A., & Djahanguiri, B. (1999). Potassium channel modulators and indomethacin-induced gastric ulceration in rats. Scandinavian Journal of Gastroenterology, 34, 962–966. doi:10.1080/003655299750025048.

    Article  CAS  Google Scholar 

  25. Sakai, K., Akima, M., & Katsuyama, I. (1999). Effects of nicorandil on experimentally induced gastric ulcers in rats: a possible role of K(ATP) channels. Japanese Journal of Pharmacology, 79, 51–57. doi:10.1254/jjp.79.51.

    Article  CAS  Google Scholar 

  26. Peskar, B. M., Ehrlich, K., & Peskar, B. A. (2002). Role of ATP-sensitive channels in prostaglandin-mediated gastroprotection in the rat. The Journal of Pharmacology and Experimental Therapeutics, 301(3), 969–974. doi:10.1124/jpet.301.3.969.

    Article  CAS  Google Scholar 

  27. Hano, J., Bugajski, J., & Danek, L. (1976). Effect of adrenergic blockade on gastric secretion altered by catecholamines in rats. Archivum Immunologiae et Therapiae Experimentalis, 24(4), 507–524.

    CAS  Google Scholar 

  28. Mihara, M., & Uchyama, M. (1978). Determination of malondialdehyde precursor in tissues by thiobarbituric acid test. Analytical Biochemistry, 86(1), 271–278. doi:10.1016/0003–2697(78)90342–1.

    Article  CAS  Google Scholar 

  29. de Kossodo, S., Houba, V., & Grau, G. E. (1995). Assaying tumor necrosis factor concentrations in human serum. A WHO International Collaborative study. Journal of Immunological Methods, 182(1), 107–114. doi:10.1016/0022–1759(95)00028–9.

    Article  Google Scholar 

  30. Sastry, K. V. H., Moudgal, R. P., Mohan, J., Tyagi, J. S., & Rao, G. S. (2002). Spectrophotometric determination of serum nitrite and nitrate by copper-cadmium alloy. Analytical Biochemistry, 306(1), 79–82. doi:10.1006/abio.2002.5676.

    Article  CAS  Google Scholar 

  31. Glavin, G. B., & Szabo, S. (1992). Experimental gastric mucosal injury: laboratory models reveal mechanisms of pathogenesis and new therapeutic strategies. The FASEB Journal, 6, 825–831.

    CAS  Google Scholar 

  32. Valcheva-Kuzmanova, S., Krasnaliev, I., Galunska, B., & Belcheva, A. (2007). Influence of DL-alpha-tocopherol acetate on indomethacin-induced gastric mucosal injury in rats. Autonomic & Autacoid Pharmacology, 27(3), 131–136. doi:10.1111/j.1474–8673.2007.00402.x.

    Article  CAS  Google Scholar 

  33. Swarnakar, S., Ganguly, K., Kundu, P., Banerjee, A., Maity, P., & Sharma, A. V. (2005). Curcumin regulates expression and activity of matrix metalloproteinase 9 and 2 during prevention and healing of indomethacin-induced gastric ulcer. The Journal of Biological Chemistry, 280(10), 9409–9415. doi:10.1074/jbc.M413398200.

    Article  CAS  Google Scholar 

  34. Santucci, L., Fiorucci, S., Di Matteo, F. M., & Morelli, A. (1995). Role of tumor necrosis factor alpha release and leukocyte margination in indomethacin-induced gastric injury in rats. Gastroenterology, 108(2), 393–401. doi:10.1016/0016–5085(95)90065–9.

    Article  CAS  Google Scholar 

  35. Kunkel, S. L., Wiggins, R. C., Chensue, S. W., & Larrick, J. (1986). Regulation of macrophage tumor necrosis factor production by prostaglandin E2. Biochemical and Biophysical Research Communications, 137, 404–410. doi:10.1016/0006–291X(86)91224–6.

    Article  CAS  Google Scholar 

  36. Hogaboam, C. M., Bissonnete, E. Y., Chin, B. C., Befus, A. D., & Wallace, J. L. (1993). Prostaglandins inhibit inflammatory mediator release from rat mast cells. Gastroenterol, 104, 122–129.

    CAS  Google Scholar 

  37. Bauer, H., Jung, T., Tsikas, D., Stichtenoth, D. O., Frolich, J. C., & Neumann, C. (1997). Nitric oxide inhibits the secretion of T-helper 1- and T-helper 2-associated cytokines in activated human T cells. Immunology, 90, 205–211. doi:10.1046/j.1365–2567.1997.00161.x.

    Article  CAS  Google Scholar 

  38. Wallace, J. L., McKnight, W., Del Soldato, P., Baydoun, A. R., & Cirino, G. (1995). Antithrombotic effects of a nitric oxide-releasing, gastric sparing aspirin derivative. The Journal of Clinical Investigation, 96, 2711–2718. doi:10.1172/JCI118338.

    Article  CAS  Google Scholar 

  39. Fiorucci, S., Antonelii, E., Santucci, L., Morelli, O., Miglietti, M., Federici, B., et al. (1999). Gastrointestinal safety of nitric oxide-derived aspirin is related to inhibition of ICE-like cysteine proteases in rats. Gastroenterol, 116(5), 1089–1106. doi:10.1016/S0016–5085(99)70012–0.

    Article  CAS  Google Scholar 

  40. Fiorucci, S., Santucci, L., Gresele, P., Faccino, R. M., del Soldato, P., & Morelli, A. (2003). Gastrointestinal safety of NO-aspirin (NCX-4016) in healthy human volunteers: a proof of concept endoscopic study. Gastroenterol, 124, 600–607. doi:10.1053/gast.2003.50096.

    Article  CAS  Google Scholar 

  41. Ismail, H. A. F., Khalifa, M. M. A., Hassan, M. K., & Ashour, O. M. (2007). Investigation of the mechanisms underlying the gastroprotective effect of nicorandil. Pharmacology, 79, 76–85. doi:10.1159/000097817.

    Article  CAS  Google Scholar 

  42. Kiefer, F., Jahn, H., Schick, M., & Wiedemann, K. (2002). Alcohol intake, tumor necrosis factor-α, leptin and craving: factors of a possibly vicious circle. Alcohol and Alcoholism (Oxford, Oxfordshire), 37(4), 401–404. doi:10.1093/alcalc/37.4.401.

    Article  CAS  Google Scholar 

  43. Khalil, H., Ismail, H., Taye, A., & Kamel, M. (2007). Gastroprotective effect of Lippia nodiflora L. extracts in ethanol-induced gastric lesions. Pharmacognosy Magazine, 3(12), 259–262.

    Google Scholar 

  44. Duffin, R., Shaw, C. A., & Rossi, A. G. (2008). Sildenafil reduces alcohol-induced gastric damage: just say ‘NO’. British Journal of Pharmacology, 153(4), 623–624. doi:10.1038/sj.bjp.0707642.

    Article  CAS  Google Scholar 

  45. Singh, L. P., Kundu, P., Ganguly, K., Mishra, A., & Swarnakar, S. (2007). Novel role of famotidine in down-regulation of matrix metalloproteinase 9 during protection of ethanol-induced acute gastric ulcer. Free Radical Biology & Medicine, 43(2), 289–299. doi:10.1016/j.freeradbiomed.2007.04.027.

    Article  CAS  Google Scholar 

  46. Bhattacharya, S., Chatterjee, S., Bauri, A., Bandivdeker, A. H., Chattopadhyay, S., Bandyopadhyay, S. K., et al. (2007). Immunopharmacological basis of the healing of indomethacin-induced gastric mucosal damage in rats by the constituents of Phyllanthus emblica. Current Science, 93(1), 47–53.

    CAS  Google Scholar 

  47. Sivalingam, N., Hanumantharaya, K., Faith, M., Basivireddy, J., & Balasubramanian, K. A. (2007). Curcumin reduces indomethacin-induced damage in the rat small intestine. Journal of Applied Toxicology, 27(6), 551–560. doi:10.1002/jat.1235.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Histological examination was kindly executed by Dr. Mohamed Hamed Mohamed, Histology Department, College of Veterinary Medicine, Zagazig University, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Abdel-Hamid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Moselhy, M.A., Abdel-Hamid, N.M. & Abdel-Raheim, S.R. Gastroprotective Effect of Nicorandil in Indomethacin and Alcohol-Induced Acute Ulcers. Appl Biochem Biotechnol 152, 449–459 (2009). https://doi.org/10.1007/s12010-008-8384-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8384-z

Keywords

Navigation