Skip to main content
Log in

Transcriptome analysis to understand the effects of the toxoflavin and tropolone produced by phytopathogenic Burkholderia on Escherichia coli

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The phytopathogenic Burkholderia species B. glumae and B. plantarii are the causal agents of bacterial wilt, grain rot, and seedling blight, which threaten the rice industry globally. Toxoflavin and tropolone are produced by these phytopathogens and are considered the most hostile biohazards with a broad spectrum of target organisms. However, despite their nonspecific toxicity, the effects of toxoflavin and tropolone on bacteria remain unknown. RNA-seq based transcriptome analysis was employed to determine the genome-wide expression patterns under phytotoxin treatment. Expression of 2327 and 830 genes was differentially changed by toxoflavin and tropolone, respectively. Enriched biological pathways reflected the down-regulation of oxidative phosphorylation and ribosome function, beginning with the inhibition of membrane biosynthesis and nitrogen metabolism under oxidative stress or iron starvation. Conversely, several systems such as bacterial chemotaxis, flagellar assembly, biofilm formation, and sulfur/taurine transporters were highly expressed as countermeasures against the phytotoxins. In addition, our findings revealed that three hub genes commonly induced by both phytotoxins function as the siderophore enterobactin, an iron-chelator. Our study provides new insights into the effects of phytotoxins on bacteria for better understanding of the interactions between phytopathogens and other microorganisms. These data will also be applied as a valuable source in subsequent applications against phytotoxins, the major virulence factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, A.E., Laroche, J., Maheswari, U., Lommer, M., Schauer, N., Lopez, P.J., Finazzi, G., Fernie, A.R., and Bowler, C. 2008. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl. Acad. Sci. USA 105, 10438–10443.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amina, M. and Ahmed, B. 2017. Pseudomonas motility and antibiotics resistance. J. Bioeng. Biomed. Sci. 7, 220.

    Google Scholar 

  • Antoniou, A., Tsolakidou, M.D., Stringlis, I.A., and Pantelides, I.S. 2017. Rhizosphere microbiome recruited from a suppressive compost improves plant fitness and increases protection against vascular wilt pathogens of tomato. Front. Plant Sci. 8, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  • Azegami, K., Nishiyama, K., and Kato, H. 1988. Effect of iron limitation on “Pseudomonas plantarii” growth and tropolone and protein production. Appl. Environ. Microbiol. 54, 844–847.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azegami, K., Nishiyama, K., Watanabe, Y., Kadota, I., Ohuchi, A., and Fukazawa, C. 1987. Pseudomonas plantarii sp. nov., the causal agent of rice seedling blight. Int. J. Syst. Evol. Microbiol. 37, 144–152.

    Google Scholar 

  • Baldi, D.L., Higginson, E.E., Hocking, D.M., Praszkier, J., Cavaliere, R., James, C.E., Bennett Wood, V., Azzopardi, K.I., Turnbull, L., Lithgow, T., et al. 2012. The type II secretion system and its ubiquitous lipoprotein substrate, SslE, are required for biofilm formation and virulence of enteropathogenic Escherichia coli. Infect. Immun. 80, 2042–2052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 57, 289–300.

    Google Scholar 

  • Benov, L. and Fridovich, I. 1996. Escherichia coli exhibits negative chemotaxis in gradients of hydrogen peroxide, hypochlorite, and N-chlorotaurine: products of the respiratory burst of phagocytic cells. Proc. Natl. Acad. Sci. USA 93, 4999–5002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley, R. 2008. A fresh look at natural tropolonoids. Nat. Prod. Rep. 25, 118–138.

    Article  CAS  PubMed  Google Scholar 

  • Bischoff, V., Cookson, S.J., Wu, S., and Scheible, W.R. 2009. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. J. Exp. Bot. 60, 955–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blattner, F.R., Plunkett, G., Bloch, C., Perna, N., Burland, V., Riley, M., Collado Vides, J., Glasner, J., Rode, C., Mayhew, G., et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462.

    Article  CAS  PubMed  Google Scholar 

  • Blount, Z.D. 2015. The unexhausted potential of E. coli. Elife 4, e05826.

    Article  PubMed Central  Google Scholar 

  • Blumwald, E. 2000. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol. 12, 431–434.

    Article  CAS  PubMed  Google Scholar 

  • Brini, F. and Masmoudi, K. 2012. Ion transporters and abiotic stress tolerance in plants. ISRN Mol. Biol. 2012, 927436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchfink, B., Xie, C., and Huson, D.H. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60.

    Article  CAS  PubMed  Google Scholar 

  • Champion, M.M., Campbell, C.S., Siegele, D.A., Russell, D.H., and Hu, J.C. 2003. Proteome analysis of Escherichia coli K-12 by two-dimensional native-state chromatography and MALDI-MS. Mol. Microbiol. 47, 383–396.

    Article  CAS  PubMed  Google Scholar 

  • Choi, O., Lee, Y., Han, I., Kim, H., Goo, E., Kim, J., and Hwang, I. 2013. A simple and sensitive biosensor strain for detecting toxoflavin using β-galactosidase activity. Biosens. Bioelectron. 50, 256–261.

    Article  CAS  PubMed  Google Scholar 

  • Choi, S.Y., Park, B., Choi, I.G., Sim, S.J., Lee, S.M., Um, Y., and Woo, H.M. 2016. Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq. Sci. Rep. 6, 30584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun, H., Choi, O., Goo, E., Kim, N., Kim, H., Kang, Y., Kim, J., Moon, J.S., and Hwang, I. 2009. The quorum sensing-dependent gene katG of Burkholderia glumae is important for protection from visible light. J. Bacteriol. 191, 4152–4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coenye, T. and Vandamme, P. 2003. Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ. Microbiol. 5, 719–729.

    Article  CAS  PubMed  Google Scholar 

  • Cornish, A.S. and Page, W.J. 1998. The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management. Microbiology 144, 1747–1754.

    Article  CAS  PubMed  Google Scholar 

  • Delcour, A.H. 2009. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta 1794, 808–816.

    Article  CAS  PubMed  Google Scholar 

  • Devi, S.L., Viswanathan, P., and Anuradha, C. 2009. Taurine enhances the metabolism and detoxification of ethanol and prevents hepatic fibrosis in rats treated with iron and alcohol. Environ. Toxicol. Pharmacol. 27, 120–126.

    Article  CAS  PubMed  Google Scholar 

  • Dröge, W. 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95.

    Article  PubMed  Google Scholar 

  • Durbin, R. 1991. Bacterial phytotoxins: mechanisms of action. Experientia 47, 776–783.

    Article  CAS  Google Scholar 

  • Eberl, L. and Vandamme, P. 2016. Members of the genus Burkholderia: good and bad guys. F1000Research 5, 1007.

    Article  Google Scholar 

  • Ewing, B. and Green, P. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194.

    Article  CAS  PubMed  Google Scholar 

  • Farr, S.B. and Kogoma, T. 1991. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol. Rev. 55, 561–585.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fathima, A. and Rao, J.R. 2018. Is Cr(III) toxic to bacteria: toxicity studies using Bacillus subtilis and Escherichia coli as model organism. Arch. Microbiol. 200, 453–462.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes, A.P., Fladvad, M., Berndt, C., Andrésen, C., Lillig, C.H., Neubauer, P., Sunnerhagen, M., Holmgren, A., and Vlamis-Gardikas, A. 2005. A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase. J. Biol. Chem. 280, 24544–24552.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, A.S., Leitão, J.H., Silva, I.N., Pinheiro, P.F., Sousa, S.A., Ramos, C.G., and Moreira, L.M. 2010. Distribution of cepacian biosynthesis genes among environmental and clinical Burkholderia strains and role of cepacian exopolysaccharide in resistance to stress conditions. Appl. Environ. Microbiol. 76, 441–450.

    Article  CAS  PubMed  Google Scholar 

  • Franchini, A.G. and Egli, T. 2006. Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-limited continuous culture conditions. Microbiology 152, 2111–2127.

    Article  CAS  PubMed  Google Scholar 

  • Fry, B. and Loria, R. 2002. Thaxtomin A: evidence for a plant cell wall target. Physiol. Mol. Plant Pathol. 60, 1–8.

    Article  CAS  Google Scholar 

  • Galperin, M.Y., Makarova, K.S., Wolf, Y.I., and Koonin, E. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261–D269.

    Article  CAS  PubMed  Google Scholar 

  • Gooderham, W.J. and Hancock, R.E. 2009. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol. Rev. 33, 279–294.

    Article  CAS  PubMed  Google Scholar 

  • Haas, B.J., Chin, M., Nusbaum, C., Birren, B.W., and Livny, J. 2012. How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes? BMC Genomics 13, 734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ham, J.H., Melanson, R.A., and Rush, M.C. 2011. Burkholderia glumae: next major pathogen of rice? Mol. Plant Pathol. 12, 329–339.

    Article  CAS  PubMed  Google Scholar 

  • Heiser, I., Oßwald, W., and Elstner, E. 1998. The formation of reactive oxygen species by fungal and bacterial phytotoxins. Plant Physiol. 36, 703–713.

    CAS  Google Scholar 

  • Hoch, J.A. 2000. Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol. 3, 165–170.

    Article  CAS  PubMed  Google Scholar 

  • Hogenhout, S.A., Van der Hoorn, R.A.L., Terauchi, R., and Kamoun, S. 2009. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant Microbe Interact. 22, 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Hu, J.C., Sherlock, G., Siegele, D.A., Aleksander, S.A., Ball, C.A., Demeter, J., Gouni, S., Holland, T.A., Karp, P.D., Lewis, J.E., et al. 2014. PortEco: a resource for exploring bacterial biology through high-throughput data and analysis tools. Nucleic Acids Res. 42, D677–D684.

    Article  CAS  PubMed  Google Scholar 

  • Ieva, R. 2017. Interfering with outer membrane biogenesis to fight Gram-negative bacterial pathogens. Virulence 8, 1049–1052.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobs, J.M., Babujee, L., Meng, F., Milling, A., and Allen, C. 2012. The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. MBio 3, e00114–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T., and Hwang, I. 2003. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 87, 890–895.

    Article  CAS  PubMed  Google Scholar 

  • Jing, X., Mi, T., Zhen, Y., Wang, H., and Yu, Z. 2019. Influence of N, P, Fe nutrients availability on nitrogen metabolism-relevant genes expression in Skeletonema marinoi. J. Ocean Univ. China 18, 239–252.

    Article  CAS  Google Scholar 

  • Jung, B., Park, J., Kim, N., Li, T., Kim, S., Bartley, L.E., Kim, J., Kim, I., Kang, Y., Yun, K., et al. 2018. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat. Commun. 9, 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashef, N. and Hamblin, M.R. 2017. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? Drug Resist. Updat. 31, 31–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keseler, I.M., Mackie, A., Peralta Gil, M., Santos Zavaleta, A., Gama Castro, S., Bonavides Martínez, C., Fulcher, C., Huerta, A.M., Kothari, A., Krummenacker, M., et al. 2013. EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res. 41, D605–D612.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Kang, Y., Choi, O., Jeong, Y., Jeong, J.E., Lim, J.Y., Kim, M., Moon, J.S., Suga, H., and Hwang, I. 2007. Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae. Mol. Microbiol. 64, 165–179.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Kim, J.G., Kang, Y., Jang, J.Y., Jog, G.J., Lim, J.Y., Kim, S., Suga, H., Nagamatsu, T., and Hwang, I. 2004. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol. Microbiol. 54, 921–934.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Park, J., Kim, J.H., Lee, J., Bang, B., Hwang, I., and Seo, Y.S. 2013. RNAseq-based transcriptome analysis of Burkholderia glumae quorum sensing. Plant Pathol. J. 29, 249–259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, S., Park, J., Lee, J., Shin, D., Park, D.S., Lim, J.S., Choi, I.Y., and Seo, Y.S. 2014. Understanding pathogenic Burkholderia glumae metabolic and signaling pathways within rice tissues through in vivo transcriptome analyses. Gene 547, 77–85.

    Article  CAS  PubMed  Google Scholar 

  • Krämer, R. 2010. Bacterial stimulus perception and signal transduction: response to osmotic stress. Chem. Rec. 10, 217–229.

    Article  CAS  PubMed  Google Scholar 

  • Kuehn, M. and Kesty, N. 2005. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19, 2645–2655.

    Article  CAS  PubMed  Google Scholar 

  • Langman, L., Young, I.G., Frost, G.E., Rosenberg, H., and Gibson, F. 1972. Enterochelin system of iron transport in Escherichia coli: mutations affecting ferric-enterochelin esterase. J. Bacteriol. 112, 1142–1149.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lareen, A., Burton, F., and Schäfer, P. 2016. Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol. 90, 575–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latuasan, H.E. and Berends, W. 1961. On the origin of the toxicity of toxoflavin. Biochim. Biophys. Acta 52, 502–508.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Park, J., Kim, S., Park, I., and Seo, Y.S. 2016. Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli. Mol. Plant Pathol. 17, 65–76.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.Y., Passalacqua, K.D., Hanna, P.C., and Sherman, D.H. 2011. Regulation of petrobactin and bacillibactin biosynthesis in Bacillus anthracis under iron and oxygen variation. PLoS One 6, e20777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. and Durbin, R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. 2009. The Sequence Alignment/Map (SAM) format and SAMtools. Bioinformatics 25, 2078–2079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, Y., Smyth, G.K., and Shi, W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Jing, L., and Tu, X. 2016. Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease. BMC Cardiovasc. Disord. 16, 54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Shen, B., Du, P., Wang, N., Wang, J., Li, J., and Sun, A. 2017. Transcriptomic analysis of the response of Pseudomonas fluorescens to epigallocatechin gallate by RNA-seq. PLoS One 12, e0177938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, B., Zhang, Y., and Zhang, W. 2014. RNA-Seq-based analysis of cold shock response in Thermoanaerobacter tengcongensis, a bacterium harboring a single cold shock protein encoding gene. PLoS One 9, e93289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maathuis, F.J. 2007. Monovalent cation transporters; establishing a link between bioinformatics and physiology. Plant Soil 301, 1–15.

    Article  CAS  Google Scholar 

  • McCloskey, D., Gangoiti, J.A., King, Z.A., Naviaux, R.K., Barshop, B.A., Palsson, B.O., and Feist, A.M. 2014. A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent. Biotechnol. Bioeng. 111, 803–815.

    Article  CAS  PubMed  Google Scholar 

  • McHugh, J.P., Rodríguez-Quiñones, F., Abdul-Tehrani, H., Svistunenko, D.A., Poole, R.K., Cooper, C.E., and Andrews, S.C. 2003. Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J. Biol. Chem. 278, 29478–29486.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh, B.K., Renfro, D.P., Knapp, G.S., Lairikyengbam, C.R., Liles, N.M., Niu, L., Supak, A.M., Venkatraman, A., Zweifel, A.E., Siegele, D.A., et al. 2012. EcoliWiki: a wiki-based community resource for Escherichia coli. Nucleic Acids Res. 40, D1270–D1277.

    Article  CAS  PubMed  Google Scholar 

  • Miethke, M. and Marahiel, M.A. 2007. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71, 413–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miwa, S., Kihira, E., Yoshioka, A., Nakasone, K., Okamoto, S., Hatano, M., Igarashi, M., Eguchi, Y., Kato, A., Ichikawa, N., et al. 2016. Identification of the three genes involved in controlling production of a phytotoxin tropolone in Burkholderia plantarii. J. Bacteriol. 198, 1604–1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Möbius, N. and Hertweck, C. 2009. Fungal phytotoxins as mediators of virulence. Curr. Opin. Plant Biol. 12, 390–398.

    Article  CAS  PubMed  Google Scholar 

  • Morozkina, E.V. and Zvyagilskaya, R.A. 2007. Nitrate reductases: structure, functions, and effect of stress factors. Biochemistry (Mosc). 72, 1151–1160.

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628.

    Article  CAS  PubMed  Google Scholar 

  • Nandakumar, R., Shahjahan, A.K.M., Yuan, X.L., Dickstein, E.R., Groth, D.E., Clark, C.A., Cartwright, R.D., and Rush, M.C. 2009. Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Dis. 93, 896–905.

    Article  CAS  PubMed  Google Scholar 

  • Parkinson, J.S. and Kofoid, E.C. 1992. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26, 71–112.

    Article  CAS  PubMed  Google Scholar 

  • Peralta, D.R., Adler, C., Corbalán, N.S., Paz García, E.C., Pomares, M.F., and Vincent, P.A. 2016. Enterobactin as part of the oxidative stress response repertoire. PLoS One 11, e0157799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phaniendra, A., Jestadi, D.B., and Periyasamy, L. 2015. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 30, 11–26.

    Article  CAS  PubMed  Google Scholar 

  • Qiao, Q., Wang, F., Zhang, J., Chen, Y., Zhang, C., Liu, G., Zhang, H., Ma, C., and Zhang, J. 2017. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci. Rep. 7, 3940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi, R. and Sacan, A. 2013. Weighted set enrichment of gene expression data. BMC Syst. Biol. 7, S10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raymond, K.N., Dertz, E.A., and Kim, S.S. 2003. Enterobactin: an archetype for microbial iron transport. Proc. Natl. Acad. Sci. USA 100, 3584–3588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reitzer, L.J. 1987. Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine and D-alanine. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology 2, 302–320.

    Google Scholar 

  • Reitzer, L. 2003. Nitrogen assimilation and global regulation in Escherichia coli. Annu. Rev. Microbiol. 57, 155–176.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, D., Vanwye, J., Exum, A., and Cowen, R. 2007. High-throughput species identification: from DNA isolation to bioinformatics. Mol. Ecol. Notes 7, 199–207.

    Article  CAS  Google Scholar 

  • Riley, M., Abe, T., Arnaud, M.B., Berlyn, M.K.B., Blattner, F.R., Chaudhuri, R.R., Glasner, J.D., Horiuchi, T., Keseler, I.M., Kosuge, T., et al. 2006. Escherichia coli K-12: a cooperatively developed annotation snapshot—2005. Nucleic Acids Res. 34, 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson, M.D., McCarthy, D.J., and K, Smyth, G. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, M.D. and Smyth, G.K. 2008. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9, 321–332.

    Article  PubMed  Google Scholar 

  • Rouhier, N., Lemaire, S.D., and Jacquot, J.P. 2008. The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu. Rev. Plant Biol. 59, 143–166.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz, N., Kahne, D., and Silhavy, T.J. 2006. Advances in understanding bacterial outer-membrane biogenesis. Nat. Rev. Microbiol. 4, 57–66.

    Article  CAS  PubMed  Google Scholar 

  • Sato, T., Nonoyama, S., Kimura, A., Nagata, Y., Ohtsubo, Y., and Tsuda, M. 2017. The small protein HemP is a transcriptional activator for the hemin uptake operon in Burkholderia multivorans ATCC 17616. Appl. Environ. Microbiol. 83, e00479–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon, J., Sänger, M., Schuster, S.C., and Gross, R. 2003. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein. Mol. Microbiol. 49, 69–79.

    Article  CAS  PubMed  Google Scholar 

  • Solis, R., Bertani, I., Degrassi, G., Devescovi, G., and Venturi, V. 2006. Involvement of quorum sensing and RpoS in rice seedling blight caused by Burkholderia plantarii. FEMS Microbiol. Lett. 259, 106–112.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, F., Zhu, Y., Sawada, H., and Matsuda, I. 1998. Identification of proteins involved in toxin production by Pseudomonas glumae. Japanese J. Phytopathol. 64, 75–79.

    Article  CAS  Google Scholar 

  • Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N.T., Roth, A., Bork, P., et al. 2017. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368.

    Article  CAS  PubMed  Google Scholar 

  • Timmermans, K.R., Stolte, W., and de Baar, H.J.W. 1994. Iron-mediated effects on nitrate reductase in marine phytoplankton. Mar. Biol. 121, 389–396.

    Article  CAS  Google Scholar 

  • Tindale, A.E., Mehrotra, M., Ottem, D., and Page, W.J. 2000. Dual regulation of catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative stress. Microbiology 146, 1617–1626.

    Article  CAS  PubMed  Google Scholar 

  • Trachtman, H., Del Pizzo, R., Futterweit, S., Levine, D., Rao, P.S., Valderrama, E., and Sturman, J.A. 1992. Taurine attenuates renal disease in chronic puromycin aminonucleoside nephropathy. Am. J. Physiol. Physiol. 262, F117–F123.

    Article  CAS  Google Scholar 

  • Trust, T.J. 1975. Antibacterial activity of tropolone. Antimicrob. Agents Chemother. 7, 500–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ugurlu, A., Yagci, A., Ulusoy, S., and Aksu, B. 2016. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa. Asian Pac. J. Trop. Biomed. 6, 698–701.

    Article  Google Scholar 

  • Ura, H., Furuya, N., Iiyama, K., Hidaka, M., Tsuchiya, K., and Matsuyama, N. 2006. Burkholderia gladioli associated with symptoms of bacterial grain rot and leaf-sheath browning of rice plants. J. Gen. Plant Pathol. 72, 98–103.

    Article  Google Scholar 

  • van Delden, C., Page, M., and Kohler, T. 2013. Involvement of Fe uptake systems and AmpC β-lactamase in susceptibility to the siderophore monosulfactam BAL30072 in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 57, 2095–2102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasudevan, R. 2014. Biofilms: microbial cities of scientific significance. J. Microbiol. Exp. 1, 00014.

    Google Scholar 

  • Wakimoto, S., Hirayae, K., Tsuchiya, K., Kushima, Y., Furuya, N., and Matsuyama, N. 1986. Production of antibiotics by plant pathogenic pseudomonads. Japanese J. Phytopathol. 52, 835–842.

    Article  Google Scholar 

  • Wang, M., Hashimoto, M., and Hashidoko, Y. 2013. Repression of tropolone production and induction of a Burkholderia plantarii pseudo-biofilm by carot-4-en-9,10-diol, a cell-to-cell signaling disrupter produced by Trichoderma virens. PLoS One 8, e78024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, M., Wei, P., Cao, M., Zhu, L., and Lu, Y. 2016. First report of rice seedling blight caused by Burkholderia plantarii in North and Southeast China. Plant Dis. 100, 645.

    Article  Google Scholar 

  • Willi, J., Küpfer, P., Evéquoz, D., Fernandez, G., Katz, A., Leumann, C., and Polacek, N. 2018. Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center. Nucleic Acids Res. 46, 1945–1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, L.D., Glenn, A.E., Zimeri, A.M., Bacon, C.W., Smith, M.A., and Riley, R.T. 2007. Fumonisin disruption of ceramide biosynthesis in maize roots and the effects on plant development and Fusarium verticillioides-induced seedling disease. J. Agric. Food Chem. 55, 2937–2946.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X.Y., Sun, B., Zhang, L., Li, N., Han, J., Zhang, J., Sun, X., and He, Q.Y. 2014. Chemical interference with iron transport systems to suppress bacterial growth of Streptococcus pneumoniae. PLoS One 9, e105953.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoneyama, K., Kono, Y., Yamaguchi, I., Horikoshi, M., and Hirooka, T. 1998. Toxoflavin is an essential factor for virulence of Burkholderia glumae causing rice seedling rot disease. Japanese J. Phytopathol. 64, 91–96.

    Article  CAS  Google Scholar 

  • Zhou, J., Richardson, A.J., and Rudd, K.E. 2013. EcoGene-RefSeq: EcoGene tools applied to the RefSeq prokaryotic genomes. Bioinformatics 29, 1917–1918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the ‘2018 Post-Doc. Development Program’ of Pusan National University. This research was supported by grants from the Strategic Initiative for Microbiomes in Agriculture and Food, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea (No. 916009021SB010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Su Seo.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Lee, HH., Jung, H. et al. Transcriptome analysis to understand the effects of the toxoflavin and tropolone produced by phytopathogenic Burkholderia on Escherichia coli. J Microbiol. 57, 781–794 (2019). https://doi.org/10.1007/s12275-019-9330-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-9330-1

Keywords

Navigation