Skip to main content
Log in

Kurthia ruminicola sp. nov., isolated from the rumen contents of a Holstein cow

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Gram-staining-positive, motile, rod-shaped bacteria, designated as H31022T and H31024 was isolated from rumen contents of a Holstein cow. Optimum growth occurred at 25°C and pH 7.0 on R2A agar medium. Oxidase and catalase activities are positive. The 16S rRNA gene sequence (1,452 bp) of the new isolates revealed they belong to the genus Kurthia of the phylum Firmicutes. Highest gene sequence similarities were assessed to be with Kurthia massiliensis JC30T (98.4%), Kurthia senegalensis JC8ET (97.5%), and Kurthia populi 10y-14T (97.4%). Kurthia sibirica DSM 4747T (97.3%), Kurthia zopfii NBRC 101529T (97.0%), and Kurthia gibsonii NCIMB 9758T (96.7%). DNA G + C content of strains H31022T and H31024 were 34.4% and 39.7%. Strains H31022T and H31024 has the following chemotaxonomic characteristics; the major fatty acids are iso-C15:0, iso-C14:0 and anteiso-C15; polar lipid profile contained diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), unknown aminophospholipids (APL), unknown glycolipids (GL), unknown phospholipids (PL), and unknown polar lipids (L); the major quinone is MK-7. Based on polyphasic taxonomic analysis, strains H31022T (= KCTC 33923T = JCM 19640T) and H31024 (= KCTC 33924T = JCM 19641T) identified a novel species in the genus Kurthia for which the name Kurthia ruminicola sp. nov. is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cappuccino, J.G. and Sherman, N. 2010. Microbiology: A Laboratory Manual, 9th ed., pp 69–74 & 161–164. Benjamin Cummings. San Francisco, USA.

    Google Scholar 

  • De Ley, J., Cattoir, H., and Reynaerts, A. 1970. The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12, 133–142.

    Article  PubMed  Google Scholar 

  • Doetsch, R.N. 1981. Determinative methods of light microscopy, pp. 21–33. In Gerhardt, P., Murray, R.G.E., Costilow, R.N., Nester, E.W., Wood, W.A., Krieg N.R., and Phillips, G.H. (eds.), Manual of Methods for General Bacteriology, American Society for Microbiology, Washington, D.C., USA.

  • Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  PubMed  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.

    Article  Google Scholar 

  • Frank, J.A., Reich, C.I., Sharma, S., Weisbaum, J.S., Wilson, B.A., and Olsen, G.J. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74, 2461–2470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, J.M. and Saiz-Jimenez, C. 2005. A simple fluorimetric method for the estimation of DNA-DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9, 75–79.

    Article  CAS  PubMed  Google Scholar 

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457–469.

    Article  CAS  Google Scholar 

  • Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M.K., Kang, M.S., Srinivasan, S., Lee, D.H., Lee, S.Y., and Jung, H.Y. 2017. Complete genome sequence of Hymenobacter sedentarius DG5BT, a bacterium resistant to gamma radiation. Mol. Cell. Toxicol. 13, 199–205.

    Article  CAS  Google Scholar 

  • Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Komagata, K. and Suzuki, K. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19, 1–207.

    Google Scholar 

  • Kuykendall, L.D., Roy, M.A.O., Neill, J.J., and Devine, T.E. 1988. Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. J. Syst. Bacteriol. 38, 358.

    Article  CAS  Google Scholar 

  • Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3, 208–218.

    Article  CAS  Google Scholar 

  • Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.

    Article  CAS  Google Scholar 

  • Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.

    Article  CAS  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.

    Google Scholar 

  • Srinivasan, S., Lee, S.Y., Kim, M.K., and Jung, H.Y. 2017. Complete genome sequence of Hymenobacter sp. DG25A, a gamma radiation-resistant bacterium isolated from soil. Mol. Cell. Toxicol. 13, 65–72.

    Article  CAS  Google Scholar 

  • Stackebrandt, E., Keddie, R.M., and Jones, D. 2006. The genus Kurthia, pp. 519–529. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. (eds.), The prokaryotes: Vol. 4: Bacteria: Firmicutes, cyanobacteria, Springer US, New York, NY, USA.

  • Stackebrandt, E. and Goebel, B.M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.

    Article  CAS  Google Scholar 

  • Tamaoka, J. and Komagata, K. 1984. Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25, 125–128.

    Article  CAS  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.

    Article  Google Scholar 

  • Trevisan, V. 1885. Carratteri di alcuni nuovi generi di Batteriacee. Atti della Accademia Fisica-Medica-Stastistica in Milano (ser 4). 3, 92–107.

    Google Scholar 

  • Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.

    Article  Google Scholar 

  • Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, S.L. and Lee, S.K. 2017. Ultraviolet radiation: DNA damage, repair, and human disorders. Mol. Cell. Toxicol. 13, 21–28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun Tae Kim or Sathiyaraj Srinivasan.

Additional information

The NCBI GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences of strains H31022T and H31024 are KF602297 and KF602298.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.K., Kim, E.T., Kim, S.B. et al. Kurthia ruminicola sp. nov., isolated from the rumen contents of a Holstein cow. J Microbiol. 56, 36–41 (2018). https://doi.org/10.1007/s12275-018-7285-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-7285-2

Keywords

Navigation