Skip to main content
Log in

De novo synthesis of bifunctional conjugated microporous polymers for synergistic coordination mediated uranium entrapment

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

This work reports a de novo synthesis of novel bifunctional conjugated microporous polymers (CMPs) exhibiting a synergistic-effect involved coordination behavior to uranium. It is highlighted that the synthetic strategy enables the engineering of the coordination environment within amidoxime functionalized CMP frameworks by specifically introducing ortho-substituted amino functionalities, enhancing the affinity to uranyl ions via forming synergistic complexes. The CMPs exhibit high Brunauer-Emmett-Teller (BET) surface area, well-developed three-dimensional (3D) networks with hierarchical porosity, and favorable chemical and thermal stability because of the covalently cross-linked structure. Compared with the amino-free counterparts, the adsorption capacity of bifunctional CMPs was increased by almost 70%, from 105 to 174 mg/g, indicating evidently enhanced binding ability to uranium. Moreover, new insights into coordination mechanism were obtained by in-depth X-ray photoelectron spectroscopy (XPS) analysis and density functional theory (DFT) calculation, suggesting a dominant role of the oxime ligands forming a 1:1 metal ions/ligands (M/L) coordination model with uranyl ions while demonstrating the synergistic engagement of the amino functionalities via direct binding to uranium center and hydrogen-bonding involved secondary-sphere interaction. This work sheds light on the underlying principles of ortho-substituted functionalities directed synergistic effect to promote the coordination of amidoxime with uranyl ions. And the synthetic strategy established here would enable the task-specific development of more novel CMP-based functional materials for broadened applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Das, S.; Heasman, P.; Ben, T.; Qiu, S. L. Porous organic materials: Strategic design and structure-function correlation. Chem. Rev. 2017, 117, 1515–1563.

    CAS  Google Scholar 

  2. Holst, J. R.; Stöckel, E.; Adams, D. J.; Cooper, A. I. High surface area networks from tetrahedral monomers: Metal-catalyzed coupling, thermal polymerization, and “click” chemistry. Macromolecules 2010, 43, 8531–8538.

    CAS  Google Scholar 

  3. Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975, 16, 4467–4470.

    Google Scholar 

  4. Jiang, J. X.; Su, F. B.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H. J.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z. et al. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem., Int. Ed. 2007, 46, 8574–8578.

    CAS  Google Scholar 

  5. Cooper, A. I. Conjugated microporous polymers. Adv. Mater. 2009, 21, 1291–1295.

    CAS  Google Scholar 

  6. Meng, Z.; Mirica, K. A. Two-dimensional d-π conjugated metal-organic framework based on hexahydroxytrinaphthylene. Nano Res. 2021, 14, 369–375.

    Google Scholar 

  7. Xu, Y. H.; Chen, L.; Guo, Z. Q.; Nagai, A.; Jiang, D. L. Light-emitting conjugated polymers with microporous network architecture: Interweaving scaffold promotes electronic conjugation, facilitates exciton migration, and improves luminescence. J. Am. Chem. Soc. 2011, 133, 17622–17625.

    CAS  Google Scholar 

  8. Liu, H. Q.; Wang, Y.; Mo, W. Q.; Tang, H. L.; Cheng, Z. Y.; Chen, Y.; Zhang, S. T.; Ma, H. W.; Li, B.; Li, X. B. Dendrimer-based, high-luminescence conjugated microporous polymer films for highly sensitive and selective volatile organic compound sensor arrays. Adv. Funct. Mater. 2020, 30, 1910275.

    CAS  Google Scholar 

  9. Zhou, Y. B.; Zhan, Z. P. Conjugated microporous polymers for heterogeneous catalysis. Chem.—Asian J. 2018, 13, 9–19.

    Google Scholar 

  10. Liu, M. X.; Zhou, B. L.; Zhou, L.; Xie, Z.; Li, S.; Chen, L. Nitroxyl radical based conjugated microporous polymers as heterogeneous catalysts for selective aerobic alcohol oxidation. J. Mater. Chem. A 2018, 6, 9860–9865.

    CAS  Google Scholar 

  11. Liao, Y. Z.; Wang, H. G.; Zhu, M. F.; Thomas, A. Efficient supercapacitor energy storage using conjugated microporous polymer networks synthesized from Buchwald-Hartwig coupling. Adv. Mater. 2018, 30, 1705710.

    Google Scholar 

  12. Lee, J. S. M.; Wu, T. H.; Alston, B. M.; Briggs, M. E.; Hasell, T.; Hu, C. C.; Cooper, A. I. Porosity-engineered carbons for supercapacitive energy storage using conjugated microporous polymer precursors. J. Mater. Chem. A 2016, 4, 7665–7673.

    CAS  Google Scholar 

  13. Ren, Y. M.; Yu, C. B.; Chen, Z. H.; Xu, Y. X. Two-dimensional polymer nanosheets for efficient energy storage and conversion. Nano Res. in press, DOI: https://doi.org/10.1007/s12274-020-2976-5.

  14. Liu, Y. C.; Cui, Y. Z.; Zhang, C. H.; Du, J. F.; Wang, S.; Bai, Y.; Liang, Z. Q.; Song, X. W. Post-cationic modification of a pyrimidine-based conjugated microporous polymer for enhancing the removal performance of anionic dyes in water. Chem.—Eur. J. 2018, 24, 7480–7488.

    CAS  Google Scholar 

  15. A, S.; Zhang, Y. W.; Li, Z. P.; Xia, H.; Xue, M.; Liu, X. M.; Mu, Y. Highly efficient and reversible iodine capture using a metalloporphyrin-based conjugated microporous polymer. Chem. Commun. 2014, 50, 8495–8498.

    CAS  Google Scholar 

  16. Yang, C. H.; Li, S. Y.; Zhang, Z. C.; Wang, H. Q.; Liu, H. L.; Jiao, F.; Guo, Z. G.; Zhang, X. T.; Hu, W. P. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 2020, 16, 2001847.

    CAS  Google Scholar 

  17. Xiang, L.; Zhu, Y. L.; Gu, S.; Chen, D. Y.; Fu, X.; Zhang, Y. D.; Yu, G. P.; Pan, C. Y.; Hu, Y. H. A luminescent hypercrosslinked conjugated microporous polymer for efficient removal and detection of mercury ions. Macromol. Rapid Commun. 2015, 36, 1566–1571.

    CAS  Google Scholar 

  18. Yang, S.; Cao, Y.; Wang, T.; Cai, S. Y.; Xu, M. Y.; Lu, W. H.; Hua, D. B. Positively charged conjugated microporous polymers with antibiofouling activity for ultrafast and highly selective uranium extraction from seawater. Environ. Res. 2020, 183, 109214.

    CAS  Google Scholar 

  19. Slater, A. G.; Cooper, A. I. Function-led design of new porous materials. Science 2015, 348, aaa8075.

    Google Scholar 

  20. Chen, J.; Yan, W.; Townsend, E. J.; Feng, J. T.; Pan, L.; Del Angel Hernandez, V.; Faul, C. F. J. Tunable surface area, porosity, and function in conjugated microporous polymers. Angew. Chem., Int. Ed. 2019, 58, 11715–11719.

    CAS  Google Scholar 

  21. Xu, Y. H.; Jin, S. B.; Xu, H.; Nagai, A.; Jiang, D. L. Conjugated microporous polymers: Design, synthesis and application. Chem. Soc. Rev. 2013, 42, 8012–8031.

    CAS  Google Scholar 

  22. Zhou, L.; Bosscher, M.; Zhang, C. S.; Özçubukçu, S.; Zhang, L.; Zhang, W.; Li, C. J.; Liu, J. Z.; Jensen, M. P.; Lai, L. H. et al. A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat. Chem. 2014, 6, 236–241.

    CAS  Google Scholar 

  23. Sun, Q.; Aguila, B.; Song, Y. P.; Ma, S. Q. Tailored porous organic polymers for task-specific water purification. Acc. Chem. Res. 2020, 53, 812–821.

    CAS  Google Scholar 

  24. Xie, Y.; Chen, C. L.; Ren, X. M.; Wang, X. X.; Wang, H. Y.; Wang, X. K. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog. Mater. Sci. 2019, 103, 180–234.

    CAS  Google Scholar 

  25. Gill, G. A.; Kuo, L. J.; Janke, C. J.; Park, J.; Jeters, R. T.; Bonheyo, G. T.; Pan, H. B.; Wai, C.; Khangaonkar, T.; Bianucci, L. et al. The uranium from seawater program at the pacific northwest national laboratory: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies. Ind. Eng. Chem. Res. 2016, 55, 4264–4277.

    CAS  Google Scholar 

  26. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    CAS  Google Scholar 

  27. Sun, Q.; Aguila, B.; Ma, S. Q. Opportunities of porous organic polymers for radionuclide sequestration. Trends Chem. 2019, 1, 292–303.

    CAS  Google Scholar 

  28. Odoh, S. O.; Bondarevsky, G. D.; Karpus, J.; Cui, Q.; He, C.; Spezia, R.; Gagliardi, L. UO22+ uptake by proteins: Understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity. J. Am. Chem. Soc. 2014, 136, 17484–17494.

    CAS  Google Scholar 

  29. Li, B. Y.; Sun, Q.; Zhang, Y. M.; Abney, C. W.; Aguila, B.; Lin, W. B.; Ma, S. Q. Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions. ACS Appl. Mater. Interfaces 2017, 9, 12511–12517.

    CAS  Google Scholar 

  30. Xu, M. Y.; Han, X. L.; Wang, T.; Li, S. H.; Hua, D. B. Conjugated microporous polymers bearing phosphonate ligands as an efficient sorbent for potential uranium extraction from high-level liquid wastes. J. Mater. Chem. A 2018, 6, 13894–13900.

    CAS  Google Scholar 

  31. Wang, T.; Xu, M. Y.; Han, X. L.; Yang, S.; Hua, D. B. Petroleum pitch-based porous aromatic frameworks with phosphonate ligand for efficient separation of uranium from radioactive effluents. J. Hazard. Mater. 2019, 368, 214–220.

    CAS  Google Scholar 

  32. Kiskan, B.; Weber, J. Versatile postmodification of conjugated microporous polymers using thiol-yne chemistry. ACS Macro Lett. 2011, 1, 37–40.

    Google Scholar 

  33. Abney, C. W.; Mayes, R. T.; Saito, T.; Dai, S. Materials for the recovery of uranium from seawater. Chem. Rev. 2017, 117, 13935–14013.

    CAS  Google Scholar 

  34. Aguila, B.; Sun, Q.; Cassady, H.; Abney, C. W.; Li, B. Y.; Ma, S. Q. Design strategies to enhance amidoxime chelators for uranium recovery. ACS Appl. Mater. Interfaces 2019, 11, 30919–30926.

    CAS  Google Scholar 

  35. Sun, Q.; Aguila, B.; Earl, L. D.; Abney, C. W.; Wojtas, L.; Thallapally, P. K.; Ma, S. Q. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv. Mater. 2018, 30, 1705479.

    Google Scholar 

  36. Tian, G. X.; Teat, S. J.; Zhang, Z. Y.; Rao, L. F. Sequestering uranium from seawater: Binding strength and modes of uranyl complexes with glutarimidedioxime. Dalton Trans. 2012, 41, 11579–11586.

    CAS  Google Scholar 

  37. Eloy, F.; Lenaers, R. The chemistry of amidoximes and related compounds. Chem. Rev. 1962, 62, 155–183.

    CAS  Google Scholar 

  38. Kelley, S. P.; Barber, P. S.; Mullins, P. H. K.; Rogers, R. D. Structural clues to UO22+/VO2+ competition in seawater extraction using amidoxime-based extractants. Chem. Commun. 2014, 50, 12504–12507.

    CAS  Google Scholar 

  39. Vukovic, S.; Watson, L. A.; Kang, S. O.; Custelcean, R.; Hay, B. P. How amidoximate binds the uranyl cation. Inorg. Chem. 2012, 51, 3855–3859.

    CAS  Google Scholar 

  40. Zhang, A. Y.; Asakura, T.; Uchiyama, G. The adsorption mechanism of uranium(VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group. React. Funct. Polym. 2003, 57, 67–76.

    CAS  Google Scholar 

  41. Zhang, L.; Pu, N.; Yu, B. X.; Ye, G.; Chen, J.; Xu, S. M.; Ma, S. Q. Skeleton engineering of homocoupled conjugated microporous polymers for highly efficient uranium capture via synergistic coordination. ACS Appl. Mater. Interfaces 2020, 12, 3688–3696.

    CAS  Google Scholar 

  42. Vukovic, S.; Hay, B. P. De novo structure-based design of bisamidoxime uranophiles. Inorg. Chem. 2013, 52, 7805–7810.

    CAS  Google Scholar 

  43. Bai, C. Y.; Zhang, M. C.; Li, B.; Zhao, X. S.; Zhang, S.; Wang, L.; Li, Y.; Zhang, J.; Ma, L. J.; Li, S. J. Modifiable diyne-based covalent organic framework: A versatile platform for in situ multipurpose functionalization. RSC Adv. 2016, 6, 39150–39158.

    CAS  Google Scholar 

  44. Sun, Q.; Aguila, B.; Perman, J.; Ivanov, A. S.; Bryantsev, V. S.; Earl, L. D.; Abney, C. W.; Wojtas, L.; Ma, S. Q. Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste. Nat. Commun. 2018, 9, 1644.

    Google Scholar 

  45. Xu, M. Y.; Wang, T.; Gao, P.; Zhao, L.; Zhou, L.; Hua, D. B. Highly fluorescent conjugated microporous polymers for concurrent adsorption and detection of uranium. J. Mater. Chem. A 2019, 7, 11214–11222.

    CAS  Google Scholar 

  46. Xiong, J.; Hu, S.; Liu, Y.; Yu, J.; Yu, H. Z.; Xie, L.; Wen, J.; Wang, X. L. Polypropylene modified with amidoxime/carboxyl groups in separating uranium(VI) from thorium(IV) in aqueous solutions. ACS Sustainable Chem. Eng. 2017, 5, 1924–1930.

    CAS  Google Scholar 

  47. Alexandratos, S. D.; Zhu, X. P.; Florent, M.; Sellin, R. Polymer-supported bifunctional amidoximes for the sorption of uranium from seawater. Ind. Eng. Chem. Res. 2016, 55, 4208–4216.

    CAS  Google Scholar 

  48. Wei, Y. Q.; Qian, J.; Huang, L.; Hua, D. B. Bifunctional polymeric microspheres for efficient uranium sorption from aqueous solution: Synergistic interaction of positive charge and amidoxime group. RSC Adv. 2015, 5, 64286–64292.

    CAS  Google Scholar 

  49. Zhang, Y.; Zhang, Y.; Sun, Y. L.; Du, X.; Shi, J. Y.; Wang, W. D.; Wang, W. 4-(N,N-Dimethylamino)pyridine-embedded nanoporous conjugated polymer as a highly active heterogeneous organocatalyst. Chem. -Eur. J. 2012, 18, 6328–6334.

    CAS  Google Scholar 

  50. Bai, Z. Q.; Yuan, L. Y.; Zhu, L.; Liu, Z. R.; Chu, S. Q.; Zheng, L. R.; Zhang, J.; Chaid, Z. F.; Shi, W. Q. Introduction of amino groups into acid-resistant mofs for enhanced U(VI) sorption. J. Mater. Chem. A 2015, 3, 525–534.

    CAS  Google Scholar 

  51. Alkordi, M. H.; Haikal, R. R.; Hassan, Y. S.; Emwas, A. H.; Belmabkhout, Y. Poly-functional porous-organic polymers to access functionality—CO2 sorption energetic relationships. J. Mater. Chem. A 2015, 3, 22584–22590.

    CAS  Google Scholar 

  52. Jiang, J. X.; Su, F. B.; Trewin, A.; Wood, C. D.; Niu, H. J.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J. Am. Chem. Soc. 2008, 130, 7710–7720.

    CAS  Google Scholar 

  53. Pan, H. B.; Kuo, L. J.; Wood, J.; Strivens, J.; Gill, G. A.; Janke, C. J.; Wai, C. M. Towards understanding KOH conditioning of amidoxime-based polymer adsorbents for sequestering uranium from seawater. RSC Adv. 2015, 5, 100715–100721.

    CAS  Google Scholar 

  54. Das, S.; Brown, S.; Mayes, R. T.; Janke, C. J.; Tsouris, C.; Kuo, L. J.; Gill, G.; Dai, S. Novel poly(imide dioxime) sorbents: Development and testing for enhanced extraction of uranium from natural seawater. Chem. Eng. J. 2016, 298, 125–135.

    CAS  Google Scholar 

  55. Yu, Z. J.; Kang, E. T.; Neoh, K. G. Amidoximation of the acrylonitrile polymer grafted on poly(tetrafluoroethylene-co-hexafluoropropylene) films and its relevance to the electroless plating of copper. Langmuir 2002, 18, 10221–10230.

    CAS  Google Scholar 

  56. Omichi, H.; Katakai, A.; Sugo, T.; Okamoto, J. A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. Sep. Sci. Technol. 1985, 20, 163–178.

    CAS  Google Scholar 

  57. Ju, P. Y.; Wu, S. J.; Su, Q.; Li, X. D.; Liu, Z. Q.; Li, G. H.; Wu, Q. L. Salen-porphyrin-based conjugated microporous polymer supported pd nanoparticles: Highly efficient heterogeneous catalysts for aqueous C-C coupling reactions. J. Mater. Chem. A 2019, 7, 2660–2666.

    CAS  Google Scholar 

  58. Xu, C.; Hedin, N. Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and co2 adsorption. J. Mater. Chem. A 2013, 1, 3406–3414.

    CAS  Google Scholar 

  59. Sun, M. H.; Huang, S. Z.; Chen, L. H.; Li, Y.; Yang, X. Y.; Yuan, Z. Y.; Su, B. L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 2016, 45, 3479–3563.

    CAS  Google Scholar 

  60. Yang, Y.; Wang, J. C.; Wu, F. C.; Ye, G.; Yi, R.; Lu, Y. X.; Chen, J. Surface-initiated SET-LRP mediated by mussel-inspired polydopamine chemistry for controlled building of novel core-shell magnetic nanoparticles for highly-efficient uranium enrichment. Polym. Chem. 2016, 7, 2427–2435.

    CAS  Google Scholar 

  61. Wu, F. C.; Ye, G.; Liu, Y. K.; Yi, R.; Huo, X. M.; Lu, Y. X.; Chen, J. New short-channel SBA-15 mesoporous silicas functionalized with polyazamacrocyclic ligands for selective capturing of palladium ions in HNO3 media. RSC Adv. 2016, 6, 66537–66547.

    CAS  Google Scholar 

  62. Doğan, M.; Abak, H.; Alkan, M. Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters. J. Hazard. Mater. 2009, 164, 172–181.

    Google Scholar 

  63. Zhang, S.; Zhao, X. S.; Li, B.; Bai, C. Y.; Li, Y.; Wang, L.; Wen, R.; Zhang, M. C.; Ma, L. J.; Li, S. J. “Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: Design, synthesis and selective sorption towards uranium at high acidic condition. J. Hazard. Mater. 2016, 314, 95–104.

    CAS  Google Scholar 

  64. Wu, F. C.; Ye, G.; Yi, R.; Sun, T. X.; Xu, C.; Chen, J. Novel polyazamacrocyclic receptor decorated core-shell superparamagnetic microspheres for selective binding and magnetic enrichment of palladium: Synthesis, adsorptive behavior and coordination mechanism. Dalton Trans. 2016, 45, 9553–9564.

    CAS  Google Scholar 

  65. Stevens, J. S.; de Luca, A. C.; Pelendritis, M.; Terenghi, G.; Downes, S.; Schroeder, S. L. M. Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron spectroscopy (XPS). Surf. Interface Anal. 2013, 45, 1238–1246.

    CAS  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the National Natural Science Foundation of China (Nos. 21922604 and 51673109) and Innovative Research Team in University (No. IRT13026). Partial support from the U.S. National Science Foundation (No. CBET-1706025) and the Robert A. Welch Foundation (No. B-0027) is also acknowledged (S. Q. M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Ye, Shengming Xu or Shengqian Ma.

Electronic Supplementary Material

12274_2020_3217_MOESM1_ESM.pdf

De novo synthesis of bifunctional conjugated microporous polymers for synergistic coordination mediated uranium entrapment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Zhang, L., Ye, G. et al. De novo synthesis of bifunctional conjugated microporous polymers for synergistic coordination mediated uranium entrapment. Nano Res. 14, 788–796 (2021). https://doi.org/10.1007/s12274-020-3217-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3217-7

KeyWords

Navigation