Skip to main content

Click Chemistry to Metal-Organic Frameworks as a Synthetic Tool for MOF and Applications for Functional Materials

  • Chapter
  • First Online:
Advances in Organic Crystal Chemistry

Abstract

Metal-organic Frameworks (MOF) are a new class of functional crystalline materials with the large nanopores and open frame structures. The controlled nanoporous structures attract for various applications such as gas sorption, catalysis, biomedical applications, and transport materials for electronic and photophysical devices. For the large demands on preparing the advanced functional materials based on the MOF, the functionalization of the MOF has been attracted significant attention for controlling the environments of the nanopores in the past decade. Among them, the most fruitful approach is post-synthetic modification (PSM) of the MOF.The PSM is defined as the modification of the organic ligands in the frameworks of the MOF by chemical reactions, especially organic reactions, after the formation of the MOF as crystalline materials. In this review, we focus the PSM of the MOF by copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC) and the related reactions that have many advantages such as diverse substrates, mild conditions, high yields, high 1,4-regio-selectivity, and high orthogonality for other organic reactions, and wide availability of the media. Furthermore, we discuss the control of the functions of the MOF and the preparation of the functional composites based on the MOF by the CuAAC of the MOF. Therefore, this review includes the following four topics: the exploration of CuAAC reaction for PSM in MOF, the development of other click reactions for PSM, the function-oriented PSM by CuAAC reaction, and networking and biocongujation of MOF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kitagawa, S., Kitaura, R., Noro, S.: Functional Porous Coordination Polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004)

    Article  CAS  Google Scholar 

  2. Stock, N., Biswas, S.: synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. Furukawa, H., Cordova, K.E., O’Keeffe, M., Yaghi, O.M.: The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013)

    Article  PubMed  CAS  Google Scholar 

  4. Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.-W.: Hydrogen storage in metal-organic frameworks. Chem. Rev. 112, 782–835 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. Murray, L.J., Dincă, M., Long, J.R.: Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. Corma, A., García, H., Llabrés i Xamena, F.X.: Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655 (2010)

    Google Scholar 

  7. Yoon, M., Srirambalaji, R., Kim, K.: Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 112, 1196–1231 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. Farrusseng, D., Aguado, S., Pinel, C.: Metal-Organic frameworks: opportunities for catalysis. Angew. Chem. Int. Ed. 48, 7502–7513 (2009)

    Article  CAS  Google Scholar 

  9. Della Rocca, J., Liu, D., Lin, W.: Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 44, 957–968 (2011)

    Google Scholar 

  10. Horcajada, P., Gref, R., Baati, T., Allan, P.K., Maurin, G., Couvreur, P., Férey, G., Morris, R.E., Serre, C.: Metal-organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. Stavila, V., Talin, A.A., Allendorf, M.D.: MOF-based electronic and optoelectronic devices. Chem. Soc. Rev. 43, 5994–6010 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. Hu, Z., Deibert, B.J., Li, J.: Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43, 5815–5840 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. Férey, G.: Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 37, 191–214 (2008)

    Article  PubMed  Google Scholar 

  14. Kuppler, R.J., Timmons, D.J., Fang, Q.-R., Li, J.-R., Makal, T.A., Young, M.D., Yuan, D., Zhao, D., Zhuang, W., Zhou, H.-C.: Potential applications of metal-organic frameworks. Coord. Chem. Rev. 253, 3042–3066 (2009)

    Article  CAS  Google Scholar 

  15. Cohen, S.M.: Postsynthetic methods for the functionalization of metal-organic frameworks. Chem. Rev. 112, 970–1000 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. Cohen, S.M.: The postsynthetic renaissance in porous solids. J. Am. Chem. Soc. 139, 2855–2863 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. Tanabe, K.K., Cohen, S.M.: Postsynthetic modification of metal-organic frameworks—A progress report. Chem. Soc. Rev. 40, 498–519 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Z., Cohen, S.M.: Postsynthetic covalent modification of a neutral metal-organic framework. J. Am. Chem Soc. 129, 12368–12369 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. Rostovtsev, V.V., Green, L.G., Fokin, V.V., Sharpless, K.B.: A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002)

    Article  CAS  Google Scholar 

  20. Kolb, H.C., Finn, M.G., Sharpless, K.B.: Click chemistry: Diverse chemical function from a few good reactions. Angew. Chemie Int. Ed. 40, 2004–2021 (2001)

    Article  CAS  Google Scholar 

  21. Wang, C., Ikhlef, D., Kahlal, S., Saillard, J.-Y., Astruc, D.: Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends. Coord. Chem. Rev. 316, 1–20 (2016)

    Article  CAS  Google Scholar 

  22. Liang, L., Astruc, D.: The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev. 255, 2933–2945 (2011)

    Google Scholar 

  23. Binder, W.H., Sachsenhofer, R.: “Click” chemistry in polymer and materials science. Macromol. Rapid Commun. 28, 15–54 (2007)

    Article  CAS  Google Scholar 

  24. Doehler, D., Michael, P., Binder, W.H.: CuAAC-based click chemistry in self-healing polymers. Acc. Chem. Res. 50, 2610–2620 (2017)

    Article  CAS  Google Scholar 

  25. Li, P.-Z., Wang, X.-J., Zhao, Y.: Click chemistry as a versatile reaction for construction and modification of metal-organic frameworks. Coord. Chem. Rev. 380, 484–518 (2019)

    Article  CAS  Google Scholar 

  26. Goto, Y., Sato, H., Shinkai, S., Sada, K.: “Clickable” metal-organic framework. J. Am. Chem. Soc. 130, 14354–14355 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. Gadzikwa, T., Lu, G., Stern, C.L., Wilson, S.R., Hupp, J.T., Nguyen, S.T.: Covalent surface modification of a metal-organic framework: Selective surface engineering via Cu I-catalyzed Huisgen cycloaddition, Chem. Commun., 5493–5495 (2008)

    Google Scholar 

  28. Gadzikwa, T., Farha, O.K., Malliakas, C.D., Kanatzidis, M.G., Hupp, J.T., Nguyen, S.T.: Selective bifunctional modification of a non-catenated metal-organic framework material via “click” chemistry. J. Am. Chem. Soc. 131, 13613–13615 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. Savonnet, M., Bazer-Bachi, D., Bats, N., Perez-Pellitero, J., Jeanneau, E., Lecocq, V., Pinel, C., Farrusseng, D.: Generic postfunctionalization route from amino-derived metal-organic frameworks. J. Am. Chem. Soc. 132, 4518–4519 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. Tuci, G., Rossin, A., Xu, X., Ranocchiari, M., van Bokhoven, J.A., Luconi, L., Manet, I., Melucci, M., Giambastiani, G.: “Click” on MOFs: A versatile tool for the multimodal derivatization of N-3-Decorated metal organic frameworks. Chem. Mater. 25, 2297–2308 (2013)

    Article  CAS  Google Scholar 

  31. Agard, N.J., Prescher, J.A., Bertozzi, C.R.: A strain-promoted [3 + 2] azide − alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004)

    Article  CAS  PubMed  Google Scholar 

  32. Sletten, E.M., Bertozzi, C.R.: Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009)

    Article  CAS  Google Scholar 

  33. Liu, C., Li, T., Rosi, N.L.: Strain-promoted “click” modification of a mesoporous metal-organic framework. J. Am. Chem. Soc. 134, 18886–18888 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Z., Liu, J., Arslan, H.K., Grosjean, S., Hagendorn, T., Gliemann, H., Braese, S., Woell, C.: post-synthetic modification of metal-organic framework thin films using click chemistry: the importance of strained C-C triple bonds. Langmuir 29, 15958–15964 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. Chen, C., Allen, C.A., Cohen, S.M.: tandem postsynthetic modification of metal-organic frameworks using an inverse-electron-demand diels-alder reaction. Inorg. Chem. 50, 10534–10536 (2011)

    Article  CAS  PubMed  Google Scholar 

  36. Hindelang, K., Kronast, A., Vagin, S.I., Rieger, B.: Functionalization of metal-organic frameworks through the postsynthetic transformation of olefin side groups. Chem. Eur. J. 19, 8244–8252 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. Jiang, H.-L., Feng, D., Liu, T.-F., Li, J.-R., Zhou, H.-C.: Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks. J. Am. Chem. Soc. 134, 14690–14693 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. Li, P.Z., Wang, X.J., Tan, R.H.D., Zhang, Q., Zou, R., Zhao, Y.: Rationally “clicked” post-modification of a highly stable metal-organic framework and its high improvement on CO2-selective capture. RSC Adv. 3, 15566–15570 (2013)

    Article  CAS  Google Scholar 

  39. Deria, P., Bury, W., Hupp, J.T., Farha, O.K.: Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation. Chem. Commun. 50, 1965–1968 (2014)

    Article  CAS  Google Scholar 

  40. Li, B., Gui, B., Hu, G., Yuan, D., Wang, C.: postsynthetic modification of an alkyne-tagged zirconium metal-organic framework via a “click” reaction. Inorg. Chem. 54, 5139–5141 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. Savonnet, M., Camarata, A., Canivet, J., Bazer-Bachi, D., Bats, N., Lecocq, V., Pinel, C., Farrusseng, D.: Tailoring metal-organic framework catalysts by click chemistry. Dalt. Trans. 41, 3945–3948 (2012)

    Article  CAS  Google Scholar 

  42. Zhu, W., He, C., Wu, P., Wu, X., Duan, C.: “Click” post-synthetic modification of metal-organic frameworks with chiral functional adduct for heterogeneous asymmetric catalysis. Dalt. Trans. 41, 3072–3077 (2012)

    Article  CAS  Google Scholar 

  43. Yi, X.C., Xi, F.G., Qi, Y., Gao, E.Q.: Synthesis and click modification of an azido-functionalized Zr(IV) metal-organic framework and a catalytic study. RSC Adv. 5, 893–900 (2015)

    Article  CAS  Google Scholar 

  44. Ishiwata, T., Furukawa, Y., Sugikawa, K., Kokado, K., Sada, K.: Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework. J. Am. Chem. Soc. 135, 5427–5432 (2013)

    Article  CAS  PubMed  Google Scholar 

  45. Ishiwata, T., Kokado, K., Sada, K.: Anisotropically swelling gels attained through axis-dependent crosslinking of mof crystals. Angew. Chem. Int. Ed. 56, 2608–2612 (2017)

    Article  CAS  Google Scholar 

  46. Ishiwata, T., Michibata, A., Kokado, K., Ferlay, S., Hosseini, M.W., Sada, K.: Box-like gel capsules from heterostructures based on a core–shell MOF as a template of crystal crosslinking. Chem. Commun. 54, 1437–1440 (2018)

    Article  CAS  Google Scholar 

  47. Anan, S., Mochizuki, Y., Kokado, K., Sada, K.: step-growth copolymerization between an immobilized monomer and a mobile monomer in metal-organic frameworks. Angew. Chem. Int. Ed. 58, 8018–8023 (2019)

    Article  CAS  Google Scholar 

  48. Zhou, W., Begum, S., Wang, Z., Krolla, P., Wagner, D., Braese, S., Woell, C., Tsotsalas, M.: High antimicrobial activity of metal-organic framework-templated porphyrin polymer thin films. ACS Appl. Mater. Interfaces. 10, 1528–1533 (2018)

    Article  CAS  PubMed  Google Scholar 

  49. Lindemann, P., Tsotsalas, M., Shishatskiy, S., Abetz, V., Krolla-Sidenstein, P., Azucena, C., Monnereau, L., Beyer, A., Goelzhaeuser, A., Mugnaini, V., Gliemann, H., Braese, S., Woell, C.: Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation. Chem. Mater. 26, 7189–7193 (2014)

    Article  CAS  Google Scholar 

  50. Wang, Z., Blaszczyk, A., Fuhr, O., Heissler, S., Woell, C., Mayor, M.: Molecular weaving via surface-templated epitaxy of crystalline coordination networks. Nat. Commun. 8, 14442 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morris, W., Briley, W.E., Auyeung, E., Cabezas, M.D., Mirkin, C.A.: Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 136, 7261–7264 (2014)

    Article  CAS  PubMed  Google Scholar 

  52. Kahn, J.S., Freage, L., Enkin, N., Garcia, M.A.A., Willner, I.: stimuli-responsive DNA-functionalized metal-organic frameworks (MOFs). Adv. Mater. 29, 1602782 (2017)

    Article  CAS  Google Scholar 

  53. Chen, W.-H., Yu, X., Liao, W.-C., Sohn, Y.S., Cecconello, A., Kozell, A., Nechushtai, R., Willner, I.: ATP-Responsive aptamer-based metal-organic framework nanoparticles (NMOFs) for the controlled release of loads and drugs. Adv. Funct. Mater. 27, 1702102 (2017)

    Article  CAS  Google Scholar 

  54. Lazaro, I.A., Haddad, S., Sacca, S., Orellana-Tavra, C., Fairen-Jimenez, D., Forgan, R.S.: Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery. CHEM 2, 561–578 (2017)

    Google Scholar 

  55. Ito, M., Ishiwata, T., Anan, S., Kokado, K., Inoue, D., Kabir, A.M.R., Kakugo, A., Sada, K.: Construction and gliding of metal-organic frameworks and microtubule conjugates. ChemistrySelect 1, 5358–5362 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Sada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sada, K., Kokado, K. (2020). Click Chemistry to Metal-Organic Frameworks as a Synthetic Tool for MOF and Applications for Functional Materials. In: Sakamoto, M., Uekusa, H. (eds) Advances in Organic Crystal Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-15-5085-0_25

Download citation

Publish with us

Policies and ethics