Skip to main content
Log in

Fluorescent glycan nanoparticle-based FACS assays for the identification of genuine drug-resistant cancer cells with differentiation potential

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 24 June 2021

This article has been updated

Abstract

Herein we develop a unique differentiated-uptake strategy capable of efficient and high-purity isolation of genuine drug-resistant (DR) cells from three types of drug-surviving cancer cells, which include paclitaxel-surviving human ovarian OVCAR-3 cancer cells and human lung carcinoma A549/Taxol cells, and doxorubicin-surviving human immortalized myelogenous leukemia K562/ADR cells. By using this strategy which relies on fluorescent glycan nanoparticle (FGNP)-based fluorescence-activated cell sorting (FACS) assays, two subpopulations with distinct fluorescences existing in drug-surviving OVCAR-3 cells were separated, and we found that the lower fluorescence (LF) subpopulation consisted of DR cells, while the higher fluorescence (HF) subpopulation was comprised of non-DR cells. Besides, the DR cells and their progenies were found distinct in their increased expression of drug-resistant genes. More intriguingly, by using the FGNP-based FACS assay to detect DR/non-DR phenotypes, we found that the DR phenotype had a potential to differentiate into the non-DR progeny, which demonstrates the differentiation feature of stem-like cancer cells. Further research disclosed that the assay can quantitatively detect the degree of drug resistance in DR cells, as well as the reversal of drug resistance that are tackled by various therapeutic methods. The strategy thus paves the way to develop theranostic approaches associated with chemotherapy-resistance and cancer stemness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Holohan, C.; Van Schaeybroeck, S.; Longley, D. B.; Johnston, P. G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714–726.

    CAS  Google Scholar 

  2. Donnenberg, V. S.; Donnenberg, A. D. Multiple drug resistance in cancer revisited: The cancer stem cell hypothesis. J. Clin. Pharmacol. 2005, 45, 872–877.

    CAS  Google Scholar 

  3. Wang, C. L.; Wang, F. C.; Zhang, J. G.; Liu, L. S.; Xu, G. X.; Dou, H. J. Fluorescent polysaccharide nanogels for the detection of tumor heterogeneity in drug-surviving cancer cells. Adv. Biosyst. 2020, 4, 1900213.

    CAS  Google Scholar 

  4. Meacham, C. E.; Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 2013, 501, 328–337.

    CAS  Google Scholar 

  5. Pastushenko, I.; Brisebarre, A.; Sifrim, A.; Fioramonti, M.; Revenco, T.; Boumahdi, S.; Van Keymeulen, A.; Brown, D.; Moers, V.; Lemaire, S. et al. Identification of the tumour transition states occurring during EMT. Nature 2018, 556, 463–468.

    CAS  Google Scholar 

  6. Cheli, Y.; Guiliano, S.; Botton, T.; Rocchi, S.; Hofman, V.; Hofman, P.; Bahadoran, P.; Bertolotto, C.; Ballotti, R. Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene 2011, 30, 2307–2318.

    CAS  Google Scholar 

  7. Hölzel, M.; Bovier, A.; Tüting, T. Plasticity of tumour and immune cells: A source of heterogeneity and a cause for therapy resistance? Nat. Rev. Cancer 2013, 13, 365–376.

    Google Scholar 

  8. O’Donovan, T. R.; O’Sullivan, G. C.; McKenna, S. L. Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy 2011, 7, 509–524.

    Google Scholar 

  9. Huang, P.; Wang, D. L.; Su, Y.; Huang, W.; Zhou, Y. F.; Cui, D. X.; Zhu, X. Y.; Yan, D. Y. Combination of small molecule prodrug and nanodrug delivery: Amphiphilic drug-drug conjugate for cancer therapy. J. Am. Chem. Soc. 2014, 136, 11748–11756.

    CAS  Google Scholar 

  10. Song, H. Q.; Li, W. L.; Qi, R. G.; Yan, L. S.; Jing, X. B.; Zheng, M. H.; Xiao, H. H. Delivering a photosensitive transplatin prodrug to overcome cisplatin drug resistance. Chem. Commun. 2015, 51, 11493–11495.

    CAS  Google Scholar 

  11. Ni, X.; Jia, S. R.; Duan, X. C.; Ding, D.; Li, K. Fluorescent nanoparticles for noninvasive stem cell tracking in regenerative medicine. J. Biomed. Nanotechnol. 2018, 14, 240–256.

    CAS  Google Scholar 

  12. Carvalho, F.; George, J.; Sheikh, H. M. A.; Selvin, R. Advances in screening, detection and enumeration of Escherichia coli using nanotechnology-based methods: A review. J. Biomed. Nanotechnol. 2018, 14, 829–846.

    CAS  Google Scholar 

  13. Xue, W. T.; Di, Z. H.; Zhao, Y.; Zhang, A. P.; Li, L. L. DNAmediated coordinative assembly of upconversion hetero-nanostructures for targeted dual-modality imaging of cancer cells. Chin. Chem. Lett. 2019, 30, 899–902.

    CAS  Google Scholar 

  14. Marusyk, A.; Polyak, K. Tumor heterogeneity: Causes and consequences. Biochim. Biophys. Acta-Rev. Cancer 2010, 1805, 105–117.

    CAS  Google Scholar 

  15. Wang, H.; Dai, T. T.; Li, S. L.; Zhou, S. Y.; Yuan, X. J.; You, J. Y.; Wang, C. L.; Mukwaya, V.; Zhou, G. D.; Liu, G. J. et al. Scalable and cleavable polysaccharide nanocarriers for the delivery of chemotherapy drugs. Acta Biomater. 2018, 72, 206–216.

    CAS  Google Scholar 

  16. Wang, H.; Dai, T. T.; Zhou, S. Y.; Huang, X. X.; Li, S. Y.; Sun, K.; Zhou, G. D.; Dou, H. J. Self-assembly assisted fabrication of dextran-based nanohydrogels with reduction-cleavable junctions for applications as efficient drug delivery systems. Sci. Rep. 2017, 7, 40011.

    CAS  Google Scholar 

  17. Wang, H.; Dai, T. T.; Lu, B. L.; Li, S. L.; Lu, Q.; Mukwaya, V.; Dou, H. J. Hybrid dextran-gadolinium Nano-suitcases as high-relaxivity MRI contrast agents. Chin. J. Polym. Sci. 2018, 36, 391–398.

    CAS  Google Scholar 

  18. Dai, T. T.; Zhou, S. Y.; Yin, C. Y.; Li, S. L.; Cao, W. G.; Liu, W.; Sun, K.; Dou, H. J.; Cao, Y. L.; Zhou, G. D. Dextran-based fluorescent nanoprobes for sentinel lymph node mapping. Biomaterials 2014, 35, 8227–8235.

    CAS  Google Scholar 

  19. Zhou, S. Y.; Min, X.; Dou, H. J.; Sun, K.; Chen, C. Y.; Chen, C. T.; Zhang, Z. F.; Jin, Y. Q.; Shen, Z. L. Facile fabrication of dextran-based fluorescent nanogels as potential glucose sensors. Chem. Commun. 2013, 49, 9473–9475.

    CAS  Google Scholar 

  20. Zhou, S. Y.; Dou, H. J.; Zhang, Z. F.; Sun, K.; Jin, Y. Q.; Dai, T. T.; Zhou, G. D.; Shen, Z. L. Fluorescent dextran-based nanogels: Efficient imaging nanoprobes for adipose-derived stem cells. Polym. Chem. 2013, 4, 4103–4112.

    CAS  Google Scholar 

  21. Guo, H. Z.; Song, S.; Dai, T. T.; Li, S. L.; Dou, H. J. Trypsin-responsive near-infrared fluorescent/magnetic resonance dual-imaging composite nanospheres based on self-assembly. Acta Polym. Sin. 2018, 1127–1140. (in Chinese)

  22. Gao, H. J.; Shi, W. D.; Freund, L. B. Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA 2005, 102, 9469–9474.

    CAS  Google Scholar 

  23. Lee, M. R.; Ju, H. J.; Kim, B. S.; Ko, Y. H.; Kim, W. S.; Kim, S. J. Isolation of side population cells in B-cell non-hodgkin’s lymphomas. Acta Haematol. 2013, 129, 10–17.

    CAS  Google Scholar 

  24. Oh, N.; Park, J. H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 2014, 9, 51–63.

    Google Scholar 

  25. Chakraborty, A.; Jana, N. R. Clathrin to lipid raft-endocytosis via controlled surface chemistry and efficient perinuclear targeting of nanoparticle. J. Phys. Chem. Lett. 2015, 6, 3688–3697.

    CAS  Google Scholar 

  26. Albanese, A.; Tang, P. S.; Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16.

    CAS  Google Scholar 

  27. Zeng, X. H.; Morgenstern, R.; Nyström, A. M. Nanoparticle-directed sub-cellular localization of doxorubicin and the sensitization breast cancer cells by circumventing GST-Mediated drug resistance. Biomaterials 2014, 35, 1227–1239.

    CAS  Google Scholar 

  28. Januchowski, R.; Zawierucha, P.; Andrzejewska, M.; Ruciński, M.; Zabel, M. Microarray-based detection and expression analysis of ABC and SLC transporters in drug-resistant ovarian cancer cell lines. Biomed. Pharmacother. 2013, 67, 240–245.

    CAS  Google Scholar 

  29. Fletcher, J. I.; Haber, M.; Henderson, M. J.; Norris, M. D. ABC transporters in cancer: More than just drug efflux pumps. Nat. Rev. Cancer 2010, 10, 147–156.

    CAS  Google Scholar 

  30. Allikmets, R.; Schriml, L. M.; Hutchinson, A.; Romano-Spica, V.; Dean, M. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 1998, 58, 5337–5339.

    CAS  Google Scholar 

  31. Johnatty, S. E.; Beesley, J.; Paul, J.; Fereday, S.; Spurdle, A. B.; Webb, P. M.; Byth, K.; Marsh, S.; McLeod, H.; AOCS Study Group et al. ABCB1 (MDR 1) polymorphisms and progression-free survival among women with ovarian cancer following paclitaxel/carboplatin chemotherapy. Clin. Cancer Res. 2008, 14, 5594–5601.

    CAS  Google Scholar 

  32. Kimchi-Sarfaty, C.; Oh, J. M.; Kim, I. W.; Sauna, Z. E.; Calcagno, A. M.; Ambudkar, S. V.; Gottesman, M. M. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 2007, 315, 525–528.

    CAS  Google Scholar 

  33. Brown, R.; Curry, E.; Magnani, L.; Wilhelm-Benartzi, C. S.; Borley, J. Poised epigenetic states and acquired drug resistance in cancer. Nat. Rev. Cancer 2014, 14, 747–753.

    CAS  Google Scholar 

  34. Beck, B.; Blanpain, C. Unravelling cancer stem cell potential. Nat. Rev. Cancer 2013, 13, 727–738.

    CAS  Google Scholar 

  35. Ottevanger, P. B. Ovarian cancer stem cells more questions than answers. Semin. Cancer Biol. 2017, 44, 67–71.

    CAS  Google Scholar 

  36. Steg, A. D.; Bevis, K. S.; Katre, A. A.; Ziebarth, A.; Dobbin, Z. C.; Alvarez, R. D.; Zhang, K.; Conner, M.; Landen, C. N. Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin. Cancer Res. 2012, 18, 869–881.

    CAS  Google Scholar 

  37. Acharyya, S.; Oskarsson, T.; Vanharanta, S.; Malladi, S.; Kim, J.; Morris, P. G.; Manova-Todorova, K.; Leversha, M.; Hogg, N.; Seshan, V. E. et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 2012, 150, 165–178.

    CAS  Google Scholar 

  38. Zhang, L. Y.; Zhou, D. B.; Guan, W. C.; Ren, W. M.; Sun, W. W.; Shi, J. M.; Lin, Q. B.; Zhang, J. G.; Qiao, T. K.; Ye, Y. L. et al. Pyridoxine 5’-phosphate oxidase is a novel therapeutic target and regulated by the TGF-β signalling pathway in epithelial ovarian cancer. Cell Death Dis. 2017, 8, 3214.

    Google Scholar 

  39. Robey, R. W.; Pluchino, K. M.; Hall, M. D.; Fojo, A. T.; Bates, S. E.; Gottesman, M. M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452–464.

    CAS  Google Scholar 

  40. Dongre, A.; Weinberg, R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 69–84.

    CAS  Google Scholar 

  41. Nieto, M. A.; Huang, R. Y. J.; Jackson, R. A.; Thiery, J. P. EMT: 2016. Cell 2016, 166, 21–45.

    CAS  Google Scholar 

  42. Sethi, G.; Sung, B.; Aggarwal, B. B. Nuclear factor-κB activation: From bench to bedside. Exp. Biol. Med. 2008, 233, 21–31.

    CAS  Google Scholar 

  43. Nakanishi, C.; Toi, M. Nuclear factor-κB inhibitors as sensitizers to anticancer drugs. Nat. Rev. Cancer 2005, 5, 297–309.

    CAS  Google Scholar 

  44. Ting, A. T.; Bertrand, M. J. M. More to life than NF-κB in TNFR1 signaling. Trends Immunol. 2016, 37, 535–545.

    CAS  Google Scholar 

  45. Annibaldi, A.; Meier, P. Checkpoints in TNF-induced cell death: Implications in inflammation and cancer. Trends Mol. Med. 2018, 24, 49–65.

    CAS  Google Scholar 

  46. McIntosh, K.; Balch, C.; Tiwari, A. K. Tackling multidrug resistance mediated by efflux transporters in tumor-initiating cells. Expert Opin. Drug Metab. Toxicol. 2016, 12, 633–644.

    CAS  Google Scholar 

  47. Eum, K. H.; Lee, M. Targeting the autophagy pathway using ectopic expression of Beclin 1 in combination with rapamycin in drug-resistant v-Ha-ras-transformed NIH 3T3 cells. Mol. Cells 2011, 31, 231–238.

    CAS  Google Scholar 

  48. Shin, J. W.; Chu, K.; Shin, S. A.; Jung, K. H.; Lee, S. T.; Lee, Y. S.; Moon, J.; Lee, D. Y.; Lee, J. S.; Lee, D. S. et al. Clinical applications of simultaneous PET/MR imaging using (R)-[11C]-verapamil with cyclosporin A: Preliminary results on a surrogate marker of drug-resistant epilepsy. Am. J. Neuroradiol. 2016, 37, 600–606.

    Google Scholar 

  49. Tsouris, V.; Joo, M. K.; Kim, S. H.; Kwon, I. C.; Won, Y. Y. Nano carriers that enable co-delivery of chemotherapy and RNAi agents for treatment of drug-resistant cancers. Biotechnol. Adv. 2014, 32, 1037–1050.

    CAS  Google Scholar 

  50. Lage, H. Therapeutic potential of RNA interference in drug-resistant cancers. Future Oncol. 2009, 5, 169–185.

    CAS  Google Scholar 

  51. Zamore, P. D.; Tuschl, T.; Sharp, P. A.; Bartel, D. P. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000, 101, 25–33.

    CAS  Google Scholar 

  52. Susa, M.; Iyer, A. K.; Ryu, K.; Choy, E.; Hornicek, F. J.; Mankin, H.; Milane, L.; Amiji, M. M.; Duan, Z. F. Inhibition of ABCB1 (MDR1) expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma. PLoS One 2010, 5, e10764.

    Google Scholar 

  53. Xia, Y. Q.; Wang, X. F.; Cheng, H.; Fang, M.; Ning, P. B.; Zhou, Y. L.; Chen, W.; Song, H. J. A polycation coated liposome as efficient siRNA carrier to overcome multidrug resistance. Colloids Surf. B Biointerfaces 2017, 159, 427–436.

    CAS  Google Scholar 

  54. Nieth, C.; Priebsch, A.; Stege, A.; Lage, H. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett. 2003, 545, 144–150.

    CAS  Google Scholar 

  55. Yadav, S.; Van Vlerken, L. E.; Little, S. R.; Amiji, M. M. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother. Pharmacol. 2009, 63, 711–722.

    CAS  Google Scholar 

  56. Zhang, X. G.; Miao, J.; Dai, Y. Q.; Du, Y Z.; Yuan, H.; Hu, F. Q. Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int. J. Pharm. 2008, 361, 239–244.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21871180 and 81872121), the “Shuguang Program” supported by the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (No. 17SG12), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. SHDP201802), the Science and Technology Commission of Shanghai Municipality (No. 18520710300 and 17ZR1404100), and the Biomedical Interdisciplinary Research Foundation of SJTU (No. YG2019QNB34).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Zhou, Guoxiong Xu or Hongjing Dou.

Electronic Supplementary Material

12274_2020_2981_MOESM1_ESM.pdf

Fluorescent glycan nanoparticle-based FACS assays for the identification of genuine drug-resistant cancer cells with differentiation potential

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Guan, W., Chen, R. et al. Fluorescent glycan nanoparticle-based FACS assays for the identification of genuine drug-resistant cancer cells with differentiation potential. Nano Res. 13, 3110–3122 (2020). https://doi.org/10.1007/s12274-020-2981-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2981-8

Keywords

Navigation