Skip to main content

Cancer Stem Cells and Multi-drug Resistance by Flow Cytometry

  • Chapter
  • First Online:
Single Cell Analysis

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 1721 Accesses

Abstract

This chapter will focus on the study of stem cells, reviewing and updating a series of methods and protocols mainly applied in the author’s laboratory to learn more from the hematopoietic system, one of the best-studied compartments so far. The lack of specific markers for stem cells makes the physical identification and isolation of this compartment difficult; the author will introduce different methodologies aimed to identify as well as to isolate very rare stem cells and their subpopulations using functional flow cytometry, which has advantages over many other methods for identifying very primitive precursor cells. With all this information, researchers interested in the identification of cancer or leukemic stem cells should take into account that flow cytometric–based experiments must be carefully evaluated and planned. If not, these elusive cells can be mismeasured, which results in frustrating and unsuccessful time-consuming efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berenson RJ, Andrews RG, Bensinger WI, Kalamasz D, Knitter G, Buckner CD, Bernstein ID (1988) Antigen CD34+ marrow cells engraft lethally irradiated baboons. J Clin Invest 81:951–955. doi:10.1172/JCI113409

    Article  Google Scholar 

  2. Srour EF, Brandt JE, Briddell RA, Leemhuis T, van Besien K, Hoffman R (1991) Human CD34+ HLA-DR-bone marrow cells contain progenitor cells capable of self-renewal, multilineage differentiation, and long-term in vitro hematopoiesis. Blood Cells 17:287–95

    Google Scholar 

  3. Bernstein ID, Andrews RG, Zsebo KM (1991) Recombinant human stem cell factor enhances the formation of colonies by CD34+ and CD34+ lin-cells, and the generation of colony-forming cell progeny from CD34+ lin-cells cultured with interleukin-3, granulocyte colony-stimulating factor, or granulocyte-macrophage colony-stimulating factor. Blood 77:2316–2321

    Google Scholar 

  4. Mitjavila MT, Natazawa M, Brignaschi P, Debili N, Breton-Gorius J, Vainchenker W (1989) Effects of five recombinant hematopoietic growth factors on enriched human erythroid progenitors in serum-replaced cultures. J Cell Physiol 138:617–623. doi:10.1002/jcp.1041380324

    Article  Google Scholar 

  5. Debili N, Hegyi E, Navarro S, Katz A, Mouthon MA, Breton-Gorius J, Vainchenker W (1991) In vitro effects of hematopoietic growth factors on the proliferation, endoreplication, and maturation of human megakaryocytes. Blood 77:2326–2338

    Google Scholar 

  6. Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE (1998) A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 4:1038–1045. doi:10.1038/2023

    Article  Google Scholar 

  7. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Google Scholar 

  8. Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I (1996) The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother 5:213–226. doi:10.1089/scd.1.1996.5.213

    Article  Google Scholar 

  9. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162. doi:10.1016/0005-2736(76)90160-7 [pii]

  10. Gerlach JH, Endicott JA, Juranka PF, Henderson G, Sarangi F, Deuchars KL, Ling V (1986) Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature 324:485–489. doi:10.1038/324485a0

    Article  Google Scholar 

  11. Cornwell MM, Tsuruo T, Gottesman MM, Pastan I (1987) ATP-binding properties of P glycoprotein from multidrug-resistant KB cells. FASEB J 1:51–54

    Google Scholar 

  12. Shen DW, Fojo A, Chin JE, Roninson IB, Richert N, Pastan I, Gottesman MM (1986) Human multidrug-resistant cell lines: increased mdr1 expression can precede gene amplification. Science 232:643–645

    Google Scholar 

  13. Alexander SP, Kelly E, Marrion N, Peters JA, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Southan C, Davies JA (2015) The concise guide to pharmacology 2015/16: transporters. Br J Pharmacol 172:6110–6202. doi:10.1111/bph.13355

    Article  Google Scholar 

  14. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58. doi:10.1038/nrc706

    Article  Google Scholar 

  15. Szczypka MS, Wemmie JA, Moye-Rowley WS, Thiele DJ (1994) A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem 269:22853–22857

    Google Scholar 

  16. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 95:15665–15670

    Google Scholar 

  17. Ross DD, Yang W, Abruzzo LV, Dalton WS, Schneider E, Lage H, Dietel M, Greenberger L, Cole SP, Doyle LA (1999) A typical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst 91:429–433

    Google Scholar 

  18. Glisson B, Gupta R, Hodges P, Ross W (1986) Cross-resistance to intercalating agents in an epipodophyllotoxin-resistant Chinese hamster ovary cell line: evidence for a common intracellular target. Cancer Res 46:1939–1942

    Google Scholar 

  19. Glisson B, Gupta R, Smallwood-Kentro S, Ross W (1986) Characterization of acquired epipodophyllotoxin resistance in a Chinese hamster ovary cell line: loss of drug-stimulated DNA cleavage activity. Cancer Res 46:1934–1938

    Google Scholar 

  20. Aronow B, Allen K, Patrick J, Ullman B (1985) Altered nucleoside transporters in mammalian cells selected for resistance to the physiological effects of inhibitors of nucleoside transport. J Biol Chem 260:6226–6233

    Google Scholar 

  21. Slovak ML, Ho JP, Cole SP, Deeley RG, Greenberger L, de Vries EG, Broxterman HJ, Scheffer GL, Scheper RJ (1995) The LRP gene encoding a major vault protein associated with drug resistance maps proximal to MRP on chromosome 16: evidence that chromosome breakage plays a key role in MRP or LRP gene amplification. Cancer Res 55:4214–4219

    Google Scholar 

  22. Scheffer GL, Wijngaard PL, Flens MJ, Izquierdo MA, Slovak ML, Pinedo HM, Meijer CJ, Clevers HC, Scheper RJ (1995) The drug resistance-related protein LRP is the human major vault protein. Nat Med 1:578–582

    Google Scholar 

  23. Sullivan DM, Latham MD, Ross WE (1987) Proliferation-dependent topoisomerase II content as a determinant of antineoplastic drug action in human, mouse, and Chinese hamster ovary cells. Cancer Res 47:3973–3979

    Google Scholar 

  24. Hedley DW (1993) Flow cytometric assays of anticancer drug resistance. Ann N Y Acad Sci 677:341–353

    Google Scholar 

  25. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726. doi:10.1038/nrc3599 [pii]

  26. Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell: entity or function? Cell 105:829–841. doi:10.1016/S0092-8674(01)00409-3 [pii]

  27. Chaudhary PM, Roninson IB (1991) Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 66:85–94. doi:0092-8674(91)90141-K [pii]

    Google Scholar 

  28. Bunting KD (2002) ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 20:11–20. doi:10.1634/stemcells.20-3-274

    Article  Google Scholar 

  29. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–34. doi:10.1038/nm0901-1028nm0901-1028 [pii]

  30. Steinbach D, Legrand O (2007) ABC transporters and drug resistance in leukemia: was P-gp nothing but the first head of the Hydra? Leukemia 21:1172–1176. doi:10.1038/sj.leu.2404692 [pii]

  31. Eechoute K, Sparreboom A, Burger H, Franke RM, Schiavon G, Verweij J, Loos WJ, Wiemer EA, Mathijssen RH (2011) Drug transporters and imatinib treatment: implications for clinical practice. Clin Cancer Res 17:406–15. doi:10.1158/1078-0432.CCR-10-2250 [pii]

  32. Van Zant G, Fry CG (1983) Hoechst 33342 staining of mouse bone marrow: effects on colony-forming cells. Cytometry 4:40–46. doi:10.1002/cyto.990040106

    Article  Google Scholar 

  33. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345

    Google Scholar 

  34. Glazer AN, Rye HS (1992) Stable dye-DNA intercalation complexes as reagents for high-sensitivity fluorescence detection. Nature 359:859–861. doi:10.1038/359859a0

    Article  Google Scholar 

  35. Beck WT (1991) Modulators of P-glycoprotein-associated multidrug resistance. Cancer Treat Res 57:151–170

    Google Scholar 

  36. Gupta S, Tsuruo T, Gollapudi S (1992) Multidrug resistant gene 1 product in human T cell subsets: role of protein kinase C isoforms and regulation by cyclosporin A. Adv Exp Med Biol 323:39–47

    Google Scholar 

  37. Petriz J, Sanchez J, Bertran J, Garcia-Lopez J (1997) Comparative effect of verapamil, cyclosporin A and SDZ PSC 833 on rhodamine 123 transport and cell cycle in vinblastine-resistant Chinese hamster ovary cells overexpressing P-glycoprotein. Anticancer Drugs 8:869–875

    Google Scholar 

  38. Garcia-Escarp M, Martinez-Munoz V, Sales-Pardo I, Barquinero J, Domingo JC, Marin P, Petriz J (2004) Flow cytometry-based approach to ABCG2 function suggests that the transporter differentially handles the influx and efflux of drugs. Cytometry A 62:129–138. doi:10.1002/cyto.a.20072

    Article  Google Scholar 

  39. Petriz J, Garcia-Lopez J (1997) Flow cytometric analysis of P-glycoprotein function using rhodamine 123. Leukemia 11:1124–1130

    Google Scholar 

  40. Feller N, Kuiper CM, Lankelma J, Ruhdal JK, Scheper RJ, Pinedo HM, Broxterman HJ (1995) Functional detection of MDR1/P170 and MRP/P190-mediated multidrug resistance in tumour cells by flow cytometry. Br J Cancer 72:543–549

    Google Scholar 

  41. Feller N, Broxterman HJ, Wahrer DC, Pinedo HM (1995) ATP-dependent efflux of calcein by the multidrug resistance protein (MRP): no inhibition by intracellular glutathione depletion. FEBS Lett 368:385–388. doi:10.1016/0014-5793(95)00677-2 [pii]

  42. Hamada H, Tsuruo T (1986) Functional role for the 170- to 180-kDa glycoprotein specific to drug-resistant tumor cells as revealed by monoclonal antibodies. Proc Natl Acad Sci USA 83:7785–7789

    Google Scholar 

  43. Sugawara I, Ohkochi E, Hamada H, Tsuruo T, Mori S (1988) Cellular and tissue distribution of MRK20 murine monoclonal antibody-defined 85-kDa protein in adriamycin-resistant cancer cell lines. Jpn J Cancer Res 79:1101–1110

    Google Scholar 

  44. Mechetner EB, Roninson IB (1992) Efficient inhibition of P-glycoprotein-mediated multidrug resistance with a monoclonal antibody. Proc Natl Acad Sci USA 89:5824–5828

    Google Scholar 

  45. Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M, Kushner JA, Jackson TL, Morrison SJ (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449:238–242. doi:10.1038/nature06115 [pii]

  46. Zangrossi S, Marabese M, Broggini M, Giordano R, D’Erasmo M, Montelatici E, Intini D, Neri A, Pesce M, Rebulla P, Lazzari L (2007) Oct-4 expression in adult human differentiated cells challenges its role as a pure stem cell marker. Stem Cells 25:1675–80. doi:10.1634/stemcells.2006-0611 [pii]

  47. Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende CC (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14:123–129. doi:10.1158/1078-0432.CCR-07-0932 [pii]

  48. Christensen K, Schroder HD, Kristensen BW (2008) CD133 identifies perivascular niches in grade II-IV astrocytomas. J Neurooncol 90:157–170. doi:10.1007/s11060-008-9648-8

    Article  Google Scholar 

  49. Darzynkiewicz Z, Juan G, Srour EF (2004) Differential staining of DNA and RNA. Curr Protoc Cytom Chapter 7:Unit 7 3. doi:10.1002/0471142956.cy0703s30

  50. Garcia-Escarp M, Martinez-Munoz V, Barquinero J, Sales-Pardo I, Domingo JC, Marin P, Petriz J (2005) A rare fraction of human hematopoietic stem cells with large telomeres. Cell Tissue Res 319:405–412. doi:10.1007/s00441-004-1022-3

    Article  Google Scholar 

  51. Fornas O, Garcia J, Petriz J (2000) Flow cytometry counting of CD34 + cells in whole blood. Nat Med 6:833–836. doi:10.1038/77571

    Article  Google Scholar 

  52. Alvarez-Larran A, Jover L, Marin P, Petriz J (2002) A multicolor, no-lyse no-wash assay for the absolute counting of CD34+ cells by flow cytometry. Cytometry 50:249–253. doi:10.1002/cyto.10129

    Article  Google Scholar 

  53. Nunez-Espinosa C, Garcia-Godoy MD, Ferreira I, Rios-Kristjansson JG, Rizo-Roca D, Rico LG, Rubi-Sans G, Palacio C, Torrella JR, Pages T, Ward MD, Viscor G, Petriz J (2016) Vybrant DyeCycle violet stain discriminates two different subsets of CD34+ cells. Curr Stem Cell Res Ther 11:66–71. doi:CSCRT-EPUB-67694 [pii]

    Google Scholar 

  54. Ost V, Neukammer J, Rinneberg H (1998) Flow cytometric differentiation of erythrocytes and leukocytes in dilute whole blood by light scattering. Cytometry 32:191–197. doi:10.1002/(SICI)1097-0320(19980701)32:3<191::AID-CYTO5>3.0.CO;2-N [pii]

  55. Petriz J (2013) Flow cytometry of the side population (SP). Curr Protoc Cytom Chapter 9(Unit9):23. doi:10.1002/0471142956.cy0923s64

    Google Scholar 

  56. Avendano A, Sales-Pardo I, Garcia-Godoy MD, Rico LG, Marin P, Petriz J (2014) Accuracy and reproducibility of stem cell side population measurements on clinically relevant products. Curr Stem Cell Res Ther 9:526–534. doi:CSCRT-EPUB-60274 [pii]

    Google Scholar 

  57. Telford WG (2010) Stem cell side population analysis and sorting using DyeCycle violet. Curr Protoc Cytom Chapter 9:Unit9 30. doi:10.1002/0471142956.cy0930s51

  58. Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, Sarkadi B, Sorrentino BP, Schuetz JD (2004) The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 279:24218–24225. doi:10.1074/jbc.M313599200M313599200 [pii]

  59. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684. doi:10.1038/nm0603-677nm0603-677 [pii]

  60. Balbuena J, Pachon G, Lopez-Torrents G, Aran JM, Castresana JS, Petriz J (2011) ABCG2 is required to control the sonic hedgehog pathway in side population cells with stem-like properties. Cytometry A 79:672–683. doi:10.1002/cyto.a.21103

    Google Scholar 

  61. Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX, Ivy SP (2015) Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 12:445–464. doi:10.1038/nrclinonc.2015.61 [pii]

  62. Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3 K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235. doi:10.1016/j.stem.2009.01.007 [pii]

  63. Greve B, Kelsch R, Spaniol K, Eich HT, Gotte M (2012) Flow cytometry in cancer stem cell analysis and separation. Cytometry A 81:284–293. doi:10.1002/cyto.a.22022

    Article  Google Scholar 

  64. Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089. doi:10.1038/nprot.2007.418 [pii]

  65. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi:10.1016/j.cell.2007.11.019 [pii]

  66. Singh U, Quintanilla RH, Grecian S, Gee KR, Rao MS, Lakshmipathy U (2012) Novel live alkaline phosphatase substrate for identification of pluripotent stem cells. Stem Cell Rev 8:1021–1029. doi:10.1007/s12015-012-9359-6

    Article  Google Scholar 

  67. Rico LG, Junca J, Ward MD, Bradford J, Petriz J (2016) Is alkaline phosphatase the smoking gun for highly refractory primitive leukemic cells? Oncotarget 7:72057–72066. doi:10.18632/oncotarget.12497 [pii]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Petriz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Petriz, J. (2017). Cancer Stem Cells and Multi-drug Resistance by Flow Cytometry. In: Robinson, J., Cossarizza, A. (eds) Single Cell Analysis. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-4499-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4499-1_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4498-4

  • Online ISBN: 978-981-10-4499-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics