Skip to main content
Log in

One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Shape- and composition-controlled synthesis of platinum-based nanocrystals (NCs) is critical for the development of electrocatalysts that have high activity toward the methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). We report one-pot surfactant-free synthesis of interconnected Pt95Co5 nanowires (NWs) via an oriented attachment process, which has distinct advantages over conventional template- and surfactant-assisted approaches. Enhanced electrochemical activities toward MOR were confirmed through comparison with pure Pt NWs and commercial Pt/C catalyst. Pt95Co5 NWs demonstrated the highest current density during the long-term stability test. These results reveal that the introduction of the 3d-transition metal Co can reduce the catalyst cost and contribute to the improvement of electrochemical performance. The integrated design of interconnected NW structure, bimetallic composition, and clean surfaces in the present system may open a new way to the development of excellent electrocatalysts in DMFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 2011, 88, 981–1007.

    Article  Google Scholar 

  2. Xu, W.; Wu, Z. C.; Tao, S. W. Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells. J. Mater. Chem. A 2016, 4, 16272–16287.

    Article  Google Scholar 

  3. Peighambardoust, S. J.; Rowshanzamir, S.; Amjadi, M. Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrogen Energy 2010, 35, 9349–9384.

    Article  Google Scholar 

  4. Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 2736–2753.

    Article  Google Scholar 

  5. Koenigsmann, C.; Wong, S. S. One-dimensional noble metal electrocatalysts: A promising structural paradigm for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 1161–1176.

    Article  Google Scholar 

  6. Chen, A. C.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 2010, 110, 3767–3804.

    Article  Google Scholar 

  7. Kakati, N.; Maiti, J.; Lee, S. H.; Viswanathan, B.; Yoon, Y. S. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru? Chem. Rev. 2014, 114, 12397–12429.

    Article  Google Scholar 

  8. Wang, L.; Yamauchi, Y. Block copolymer mediated synthesis of dendritic platinum nanoparticles. J. Am. Chem. Soc. 2009, 131, 9152–9153.

    Article  Google Scholar 

  9. Xia, B. Y.; Ng, W. T.; Wu, H. B.; Wang, X.; Lou, X. W. Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. Angew. Chem., Int. Ed. 2012, 51, 7213–7216.

    Article  Google Scholar 

  10. Sun, X. H.; Zhu, X.; Zhang, N.; Guo, J.; Guo, S. J.; Huang, X. Q. Controlling and self assembling of monodisperse platinum nanocubes as efficient methanol oxidation electrocatalysts. Chem. Commun. 2015, 51, 3529–3532.

    Article  Google Scholar 

  11. Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.

    Article  Google Scholar 

  12. Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

    Article  Google Scholar 

  13. Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

    Article  Google Scholar 

  14. Jiang, L.-Y.; Huang, X.-Y.; Wang, A.-J.; Li, X.-S.; Yuan, J. H.; Feng, J.-J. Facile solvothermal synthesis of Pt76Co24 nanomyriapods for efficient electrocatalysis. J. Mater. Chem. A 2017, 5, 10554–10560.

    Article  Google Scholar 

  15. Lu, Q. Q.; Wei, C. T.; Sun, L. T.; Alothman, Z. A.; Malgras, V.; Yamauchi, Y.; Wang, H. J.; Wang, L. Smart design of hollow AuPt nanospheres with a porous shell as superior electrocatalysts for ethylene glycol oxidation. RSC Adv. 2016, 6, 19632–19637.

    Article  Google Scholar 

  16. Lu, S. L.; Eid, K.; Ge, D. H.; Guo, J.; Wang, L.; Wang, H. J.; Gu, H. W. One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale 2017, 9, 1033–1039.

    Article  Google Scholar 

  17. Lu, Q. Q.; Wang, H. J.; Eid, K.; Alothman, Z. A.; Malgras, V.; Yamauchi, Y.; Wang, L. Synthesis of hollow platinumpalladium nanospheres with a dendritic shell as efficient electrocatalysts for methanol oxidation. Chem.— Asian. J. 2016, 11, 1939–1944.

    Article  Google Scholar 

  18. Zhu, C. Z.; Shi, Q. R.; Fu, S. F.; Song, J. H.; Xia, H. B.; Du, D.; Lin, Y. H. Efficient synthesis of MCu (M = Pd, Pt, and Au) aerogels with accelerated gelation kinetics and their high electrocatalytic activity. Adv. Mater. 2016, 28, 8779–8783.

    Article  Google Scholar 

  19. Wang, D.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

    Article  Google Scholar 

  20. Narayanamoorthy, B.; Ramanatha Datta, K. K.; Eswaramoorthy, M.; Balaji, S. Highly active and stable Pt3Rh nanoclusters as supportless electrocatalyst for methanol oxidation in direct methanol fuel cells. ACS Catal. 2014, 4, 3621–3629.

    Article  Google Scholar 

  21. Eid, K.; Ahmad, Y. H.; AlQaradawi, S. Y.; Allam, N. K. Rational design of porous binary Pt-based nanodendrites as efficient catalysts for direct glucose fuel cells over a wide pH range. Catal. Sci. Technol. 2017, 7, 2819–2827.

    Article  Google Scholar 

  22. Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang, X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 3797–3801.

    Article  Google Scholar 

  23. Li, C. L.; Imura, M.; Yamauchi, Y. Displacement plating of a mesoporous Pt skin onto Co nanochains in a lowconcentration surfactant solution. Chem.— Eur. J. 2014, 20, 3277–3282.

    Article  Google Scholar 

  24. Gong, M. X.; Fu, G. T.; Chen, Y.; Tang, Y. W.; Lu, T. H. Autocatalysis and selective oxidative etching induced synthesis of platinum-copper bimetallic alloy nanodendrites electrocatalysts. ACS Appl. Mater. Interfaces 2014, 6, 7301–7308.

    Article  Google Scholar 

  25. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

    Article  Google Scholar 

  26. Choi, D. S.; Robertson, A. W.; Warner, J. H.; Kim, S. O.; Kim, H. Low-temperature chemical vapor deposition synthesis of Pt-Co alloyed nanoparticles with enhanced oxygen reduction reaction catalysis. Adv. Mater. 2016, 28, 7115–7122.

    Article  Google Scholar 

  27. Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850–11859.

    Article  Google Scholar 

  28. Ma, Z. Z.; Yu, H. C.; Wu, Z. Y.; Wu, Y.; Xiao, F. B. A highly sensitive amperometric glucose biosensor based on a nano-cube Cu2O modified glassy carbon electrode. Chin. J. Anal. Chem. 2016, 44, 822–827.

    Article  Google Scholar 

  29. Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, J.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712–8717.

    Article  Google Scholar 

  30. Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Threedimensional hierarchical Pt-Cu superstructures. Nano Res. 2015, 8, 832–838.

    Article  Google Scholar 

  31. Wang, W.; Lv, F.; Lei, B.; Wan, S.; Luo, M. C.; Guo, S. J. Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv. Mater. 2016, 28, 10117–10141.

    Article  Google Scholar 

  32. Su, Y. K.; Liu, H.; Feng, M.; Yan, Z. L.; Cheng, Z. H.; Tang, J. N.; Yang, H. T. Bimetallic Pt3Co nanowires as electrocatalyst: The effects of thermal treatment on electrocatalytic oxidation of methanol. Electrochim. Acta 2015, 161, 124–128.

    Article  Google Scholar 

  33. Liang, H. W.; Liu, S.; Yu, S. H. Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates. Adv. Mater. 2010, 22, 3925–3937.

    Article  Google Scholar 

  34. Zhang, Z. T.; Blom, D. A.; Gai, Z.; Thompson, J. R.; Shen, J.; Dai, S. High-yield solvothermal formation of magnetic CoPt alloy nanowires. J. Am. Chem. Soc. 2003, 125, 7528–7529.

    Article  Google Scholar 

  35. Liu, H. Q.; Adzic, R. R.; Wong, S. S. Multifunctional ultrathin PdxCu1–x and Pt•PdxCu1–x one-dimensional nanowire motifs for various small molecule oxidation reactions. ACS Appl. Mater. Interfaces 2015, 7, 26145–26157.

    Article  Google Scholar 

  36. Hong, W.; Shang, C. S.; Wang, J.; Wang, E. K. Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 2015, 8, 2910–2915.

    Article  Google Scholar 

  37. Zhang, J.; Cullen, D. A.; Forest, R. V.; Wittkopf, J. A.; Zhuang, Z. B.; Sheng, W. C.; Chen, J. G.; Yan, Y. S. Platinum−ruthenium nanotubes and platinum−ruthenium coated copper nanowires as efficient catalysts for electrooxidation of methanol. ACS Catal. 2015, 5, 1468–1474.

    Article  Google Scholar 

  38. Zhao, X.; Zhang, J.; Wang, L. J.; Li, H. X.; Liu, Z. L.; Chen, W. Ultrathin PtPdCu nanowires fused porous architecture with 3D molecular accessibility: An active and durable platform for methanol oxidation. ACS Appl. Mater. Interfaces 2015, 7, 26333–26339.

    Article  Google Scholar 

  39. Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 2013, 135, 9480–9485.

    Article  Google Scholar 

  40. Yin, A.-X.; Min, X.-Q.; Zhu, W.; Liu, W.-C.; Zhang, Y.-W.; Yan, C.-H. Pt-Cu and Pt-Pd-Cu concave nanocubes with high-index facets and superior electrocatalytic activity. Chem.—Eur. J. 2012, 18, 777–782.

    Article  Google Scholar 

  41. Liu, L. F.; Pippel, E.; Scholz, R.; Gösele, U. Nanoporous Pt-Co alloy nanowires: Fabrication, characterization, and electrocatalytic properties. Nano Lett. 2009, 9, 4352–4358.

    Article  Google Scholar 

  42. Lai, J. P.; Zhang, L.; Qi, W. J.; Zhao, J. M.; Xu, M.; Gao, W. Y.; Xu, G. B. Facile synthesis of porous PtM (M = Cu, Ni) nanowires and their application as efficient electrocatalysts for methanol electrooxidation. ChemCatChem 2014, 6, 2253–2257.

    Article  Google Scholar 

  43. Chang, F. F.; Yu, G.; Shan, S. Y.; Skeete, Z.; Wu, J. F.; Luo, J.; Ren, Y.; Petkov, V.; Zhong, C.-J. Platinum-nickel nanowire catalysts with composition-tunable alloying and faceting for the oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 12557–12568.

    Article  Google Scholar 

  44. Zhou, Y. Z.; Yang, J.; Zhu, C. Z.; Du, D.; Cheng, X. N.; Yen, C. H.; Wai, C. M.; Lin, Y. H. Newly designed graphene cellular monolith functionalized with hollow Pt-M (M = Ni, Co) nanoparticles as the electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 25863–25874.

    Article  Google Scholar 

  45. Huang, H. J.; Fan, Y.; Wang, X. Low-defect multi-walled carbon nanotubes supported PtCo alloy nanoparticles with remarkable performance for electrooxidation of methanol. Electrochim. Acta 2012, 80, 118–125.

    Article  Google Scholar 

  46. Xue, Q. M.; Xu, S. B.; Yan, X.; Luo, B. J. Synthesis of worm-like PtCo nanotubes for methanol oxidation. Electrochim. Commun. 2013, 30, 71–74.

    Article  Google Scholar 

  47. Ahmadi, R.; Amini, M. K.; Bennett, J. C. Pt-Co alloy nanoparticles synthesized on sulfur-modified carbon nanotubes as electrocatalysts for methanol electrooxidation reaction. J. Catal. 2012, 292, 81–89.

    Article  Google Scholar 

  48. Liao, Y.; Yu, G.; Zhang, Y.; Guo, T. T.; Chang, F. F.; Zhong, C. J. Composition-tunable PtCu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction. J. Phys. Chem. C 2016, 120, 10476–10484.

    Article  Google Scholar 

  49. Chang, F. F.; Shan, S. Y.; Petkov, V.; Skeete, Z.; Lu, A. L.; Ravid, J.; Wu, J. F.; Luo, J.; Yu, G.; Ren, Y. et al. Composition tunability and (111)-dominant facets of ultrathin platinumgold alloy nanowires toward enhanced electrocatalysis. J. Am. Chem. Soc. 2016, 138, 12166–12175.

    Article  Google Scholar 

  50. Mourdikoudis, S.; Liz-Marzán, L. M. Oleylamine in nanoparticle synthesis. Chem. Mater. 2013, 25, 1465–1476.

    Article  Google Scholar 

  51. Alia, S. M.; Pylypenko, S.; Neyerlin, K. C.; Cullen, D. A.; Kocha, S. S.; Pivovar, B. S. Platinum-coated cobalt nanowires as oxygen reduction reaction electrocatalysts. ACS Catal. 2014, 4, 2680–2686.

    Article  Google Scholar 

  52. Yu, X. F.; Wang, D. S.; Peng, Q.; Li, Y. D. Pt-M (M = Cu, Co, Ni, Fe) nanocrystals: From small nanoparticles to wormlike nanowires by oriented attachment. Chem.—Eur. J. 2013, 19, 233–239.

    Article  Google Scholar 

  53. Wang, Q.; Li, Y. J.; Liu, B. C.; Xu, G. R.; Zhang, G.; Zhao, Q.; Zhang, J. A facile reflux procedure to increase active surface sites form highly active and durable supported palladium@platinum bimetallic nanodendrites. J. Power Sources 2015, 297, 59–67.

    Article  Google Scholar 

  54. Bertin, E.; Garbarino, S.; Ponrouch, A.; Guay, D. Synthesis and characterization of PtCo nanowires for the electrooxidation of methanol. J. Power Sources 2012, 206, 20–28.

    Article  Google Scholar 

  55. Wang, Z. H.; Xie, W. F.; Zhang, F. F.; Xia, J. F.; Gong, S. D.; Xia, Y. Z. Facile synthesis of PtPdPt nanocatalysts for methanol oxidation in alkaline solution. Electrochim. Acta 2016, 192, 400–406.

    Google Scholar 

  56. Xiao, M. L.; Li, S. T.; Zhu, J. B.; Li, K.; Liu, C. P.; Xing, W. Highly active PtAu nanowire networks for formic acid oxidation. ChemPlusChem 2014, 79, 1123–1128.

    Article  Google Scholar 

  57. Zeng, J. H.; Lee, J. Y. Effects of preparation conditions on performance of carbon-supported nanosize Pt-Co catalysts for methanol electro-oxidation under acidic conditions. J. Power Sources 2005, 140, 268–273.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21435005 and 21627808), the Development Project of Science and Technology of Jilin Province (No. 20170101195JC), and Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDY-SSW-SLH019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiurong Yang.

Electronic supplementary material

12274_2017_1881_MOESM1_ESM.pdf

One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Sun, L., Zhao, X. et al. One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction. Nano Res. 11, 2562–2572 (2018). https://doi.org/10.1007/s12274-017-1881-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1881-z

Keywords

Navigation