Skip to main content
Log in

Novel dual fluorescence temperature-sensitive chameleon DNA-templated silver nanocluster pair for intracellular thermometry

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

For the first time, we are reporting a novel type of dual fluorescence temperature-sensitive DNA-templated silver nanocluster (AgNC) pair, which contains two pieces of single-stranded AgNC in proximity through hybridization. Both the chameleon AgNC pairs, A-NCP and B-NCP, possess two bright fluorescence peaks that achieve sensitive variations corresponding to temperature change from 15 to 45 °C. With the increase in temperature, one of the fluorescence emissions of A-NCP (A-FL570) increases, while the other (A-FL640) decreases. However, both the emissions of B-NCP (B-FL685 and B-FL620) decrease simultaneously. Therefore, A-NCP shows a remarkable fluorescence color variation from orange to yellow, while the fluorescence color of B-NCP changes from orange to colorless, with increase in temperature. Moreover, the temperature responding linear range of A-NCP can be regulated by adjusting the structures and sequences of assistant DNA templates. It is assumed that the two single-stranded segmental AgNCs are integrated together as they are assembled into AgNC pairs, leading to a dramatic variation in fluorescence properties. The temperature-sensitive phenomenon is due to the dehybridization-induced separation of two pieces of segmental AgNC, caused by temperature increase. The temperature-sensitive AgNC pairs have been successful in indicating the temperature of living cells, showing the potential for a new application of silver nanocluster as a nanothermometer with adjustable response range, bringing novel insight into the regulatory mechanism of AgNC fluorescence variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yeh, H.-C.; Sharma, J.; Shih, I.-M.; Vu, D. M.; Martinez, J. S.; Werner, J. H. A fluorescence light-up Ag nanocluster probe that discriminates single-nucleotide variants by emission color. J. Am. Chem. Soc. 2012, 134, 11550–11558.

    Article  Google Scholar 

  2. Zhang, Y.; Zhu, C. F.; Zhang, L.; Tan, C. L.; Yang, J.; Chen, B.; Wang, L. H.; Zhang, H. DNA-templated silver nanoclusters for multiplexed fluorescent DNA detection. Small 2015, 11, 1385–1389.

    Article  Google Scholar 

  3. Xu, M. D.; Gao, Z. Q.; Wei, Q. H.; Chen, G. N.; Tang, D. P. Label-free hairpin DNA-scaffolded silver nanoclusters for fluorescent detection of Hg2+ using exonuclease III-assisted target recycling amplification. Biosens. Bioelectron. 2016, 79, 411–415.

    Article  Google Scholar 

  4. Del Bonis-O’Donnell, J. T.; Vong, D.; Pennathur, S.; Fygenson, D. K. A universal design for a DNA probe providing ratiometric fluorescence detection by generation of silver nanoclusters. Nanoscale 2016, 8, 14489–14496.

    Article  Google Scholar 

  5. Zhu, J. B.; Zhang, L. B.; Teng, Y.; Lou, B. H.; Jia, X. F.; Gu, X. X.; Wang, E. K. G-quadruplex enhanced fluorescence of DNA-silver nanoclusters and their application in bioimaging. Nanoscale 2015, 7, 13224–13229.

    Article  Google Scholar 

  6. Jiang, H.; Xu, G.; Sun, Y. M.; Zheng, W. W.; Zhu, X. X.; Wang, B. J.; Zhang, X. J.; Wang, G. F. A “turn-on” silver nanocluster based fluorescent sensor for folate receptor detection and cancer cell imaging under visual analysis. Chem. Commun. 2015, 51, 11810–11813.

    Article  Google Scholar 

  7. Shah, P.; Rorvig-Lund, A.; Ben Chaabane, S.; Thulstrup, P. W.; Kjaergaard, H. G.; Fron, E.; Hofkens, J.; Yang, S. W.; Vosch, T. Design aspects of bright red emissive silver nanoclusters/DNA probes for microrna detection. Acs Nano 2012, 6, 8803–8814.

    Article  Google Scholar 

  8. Chen, Y. A.; Obliosca, J. M.; Liu, Y. L.; Liu, C.; Gwozdz, M. L.; Yeh, H.-C. Nanocluster beacons enable detection of a single N6-methyladenine. J. Am. Chem. Soc. 2015, 137, 10476–10479.

    Article  Google Scholar 

  9. Liu, W. T.; Lai, H.; Huang, R.; Zhao, C. T.; Wang, Y. M.; Weng, X. C.; Zhou, X. DNA methyltransferase activity detection based on fluorescent silver nanocluster hairpinshaped DNA probe with 5′-C-rich/G-rich-3′ tails. Biosens. Bioelectron. 2015, 68, 736–740.

    Article  Google Scholar 

  10. Li, T.; Zhang, L. B.; Ai, J.; Dong, S. J.; Wang, E. K. Ion-tuned DNA/Ag fluorescent nanoclusters as versatile logic device. Acs Nano 2011, 5, 6334–6338.

    Article  Google Scholar 

  11. Tao, Y.; Li, M. Q.; Ren, J. S.; Qu, X. G. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015, 44, 8636–8663.

    Article  Google Scholar 

  12. O’Neill, P. R.; Young, K.; Schiffels, D.; Fygenson, D. K. Few-atom fluorescent silver clusters assemble at programmed sites on DNA nanotubes. Nano Lett. 2012, 12, 5464–5469.

    Article  Google Scholar 

  13. Sharma, J.; Rocha, R. C.; Phipps, M. L.; Yeh, H.-C.; Balatsky, K. A.; Vu, D. M.; Shreve, A. P.; Werner, J. H.; Martinez, J. S. A DNA-templated fluorescent silver nanocluster with enhanced stability. Nanoscale 2012, 4, 4107–4110.

    Article  Google Scholar 

  14. New, S. Y.; Lee, S. T.; Su, X. D. DNA-templated silver nanoclusters: Structural correlation and fluorescence modulation. Nanoscale 2016, 8, 17729–17746.

    Article  Google Scholar 

  15. Del Bonis-O’Donnell, J. T.; Pennathur, S.; Fygenson, D. K. Changes in spectra and conformation of hairpin DNAstabilized silver nanoclusters induced by stem sequence perturbations. Langmuir 2016, 32, 569–576.

    Article  Google Scholar 

  16. Obliosca, J. M.; Babin, M. C.; Liu, C.; Liu, Y. H.; Chen, Y. A.; Batson, R. A.; Ganguly, M.; Petty, J. T.; Yeh, H.-C. A complementary palette of nanocluster beacons. ACS Nano 2014, 8, 10150–10160.

    Article  Google Scholar 

  17. Zhang, M.; Liu, Y. Q.; Yu, C. Y.; Yin, B. C.; Ye, B. C. Multiplexed detection of micrornas by tuning DNA-scaffolded silver nanoclusters. Analyst 2013, 138, 4812–4817.

    Article  Google Scholar 

  18. Juul, S.; Obliosca, J. M.; Liu, C.; Liu, Y. L.; Chen, Y. A.; Imphean, D. M.; Knudsen, B. R.; Ho, Y.-P.; Leong, K. W.; Yeh, H.-C. Nanocluster beacons as reporter probes in rolling circle enhanced enzyme activity detection. Nanoscale 2015, 7, 8332–8337.

    Article  Google Scholar 

  19. Yeh, H.-C.; Sharma, J.; Han, J. J.; Martinez, J. S.; Werner, J. H. A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett. 2010, 10, 3106–3110.

    Article  Google Scholar 

  20. New, S. Y.; Lee, S. T.; Su, X. D. DNA-templated silver nanoclusters: Structural correlation and fluorescence modulation. Nanoscale 2016, 8, 17729–17746.

    Article  Google Scholar 

  21. Teng, Y.; Jia, X. F.; Zhang, S.; Zhu, J. B.; Wang, E. K. A nanocluster beacon based on the template transformation of DNA-templated silver nanoclusters. Chem. Commun. 2016, 52, 1721–1724.

    Article  Google Scholar 

  22. Yin, B. C.; Ma, J. L.; Le, H. N.; Wang, S. L.; Xu, Z. G.; Ye, B. C. A new mode to light up an adjacent DNA-scaffolded silver probe pair and its application for specific DNA detection. Chem. Commun. 2014, 50, 15991–15994.

    Article  Google Scholar 

  23. Ma, J. L.; Yin, B. C.; Ye, B. C. A versatile proximitydependent probe based on light-up DNA-scaffolded silver nanoclusters. Analyst 2016, 141, 1301–1306.

    Article  Google Scholar 

  24. Ma, J. L.; Yin, B. C.; Ye, B. C. DNA template-regulated intergrowth of a fluorescent silver nanocluster emitter pair. RSC Adv. 2015, 5, 98467–98471.

    Article  Google Scholar 

  25. Schultz, D.; Gardner, K.; Oemrawsingh, S. S. R.; Markešević, N.; Olsson, K.; Debord, M.; Bouwmeester, D.; Gwinn, E. Evidence for rod-shaped DNA-stabilized silver nanocluster emitters. Adv. Mater. 2013, 25, 2797–2803.

    Article  Google Scholar 

  26. Swasey, S. M.; Karimova, N.; Aikens, C. M.; Schultz, D. E.; Simon, A. J.; Gwinn, E. G. Chiral electronic transitions in fluorescent silver clusters stabilized by DNA. ACS Nano 2014, 8, 6883–6892.

    Article  Google Scholar 

  27. Copp, S. M.; Bogdanov, P.; Debord, M.; Singh, A.; Gwinn, E. Base motif recognition and design of DNA templates for fluorescent silver clusters by machine learning. Adv. Mater. 2014, 26, 5839–5845.

    Article  Google Scholar 

  28. Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D. Nanometre-scale thermometry in a living cell. Nature 2013, 500, 54–58.

    Article  Google Scholar 

  29. Shang, L.; Stockmar, F.; Azadfar, N.; Nienhaus, G. U. Intracellular thermometry by using fluorescent gold nanoclusters. Angew. Chem., Int. Ed. 2013, 52, 11154–11157.

    Article  Google Scholar 

  30. Wang, C.; Ling, L.; Yao, Y. G.; Song, Q. J. One-step synthesis of fluorescent smart thermo-responsive copper clusters: A potential nanothermometer in living cells. Nano Res. 2015, 8, 1975–1986.

    Article  Google Scholar 

  31. Gui, R. J.; Wan, A. J.; Liu, X. F.; Jin, H. Intracellular fluorescent thermometry and photothermal-triggered drug release developed from gold nanoclusters and doxorubicin dual-loaded liposomes. Chem. Commun. 2014, 50, 1546–1548.

    Article  Google Scholar 

  32. Wang, C. X.; Huang, Y. J.; Lin, H. H.; Xu, Z. Z.; Wu, J. P.; Humphrey, M. G.; Zhang, C. Gold nanoclusters based dual-emission hollow TiO2 microsphere for ratiometric optical thermometry. RSC Adv. 2015, 5, 61586–61592.

    Article  Google Scholar 

  33. Ye, F. M.; Wu, C. F.; Jin, Y. H.; Chan, Y. H.; Zhang, X. J.; Chiu, D. T. Ratiometric temperature sensing with semiconducting polymer dots. J. Am. Chem. Soc. 2011, 133, 8146–8149.

    Article  Google Scholar 

  34. Oemrawsingh, S. S. R.; Markešević, N.; Gwinn, E. G.; Eliel, E. R.; Bouwmeester, D. Spectral properties of individual DNA-hosted silver nanoclusters at low temperatures. J. Phys. Chem. C. 2012, 116, 25568–25575.

    Article  Google Scholar 

  35. Zhao, T. T.; Chen, Q. Y.; Yang, H. Spectroscopic study on the formation of DNA-Ag clusters and its application in temperature sensitive vehicles of DOX. Spectrochim. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2015, 137, 66–69.

    Article  Google Scholar 

  36. Ganguly, M.; Bradsher, C.; Goodwin, P.; Petty, J. T. DNAdirected fluorescence switching of silver clusters. J. Phys. Chem. C. 2015, 119, 27829–27837.

    Article  Google Scholar 

  37. Petty, J. T.; Nicholson, D. A.; Sergev, O. O.; Graham, S. K. Near-infrared silver cluster optically signaling oligonucleotide hybridization and assembling two DNA hosts. Anal. Chem. 2014, 86, 9220–9228.

    Article  Google Scholar 

  38. Dembska, A. The analytical and biomedical potential of cytosine-rich oligonucleotides: A review. Anal. Chim. Acta 2016, 930, 1–12.

    Article  Google Scholar 

  39. Bhaysar-Jog, Y. P.; Van Dornshuld, E.; Brooks, T. A.; Tschumper, G. S.; Wadkins, R. M. Epigenetic modification, dehydration, and molecular crowding effects on the thermodynamics of i-Motif structure formation from C-rich DNA. Biochemistry 2014, 53, 1586–1594.

    Article  Google Scholar 

  40. Ma, K.; Wang, H.; Li, X.; Xu, B.; Tian, W. J. Turn-on sensing for Ag+ based on AIE-active fluorescent probe and cytosine-rich DNA. Anal. Bioanal. Chem. 2015, 407, 2625–2630.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 21375123) and The Ministry of Science and Technology of China (No. 216YFA0203201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Dong.

Electronic supplementary material

12274_2017_1817_MOESM1_ESM.pdf

Novel dual fluorescence temperature-sensitive chameleon DNA-templated silver nanocluster pair for intracellular thermometry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Zhu, J., Teng, Y. et al. Novel dual fluorescence temperature-sensitive chameleon DNA-templated silver nanocluster pair for intracellular thermometry. Nano Res. 11, 2012–2023 (2018). https://doi.org/10.1007/s12274-017-1817-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1817-7

Keywords

Navigation