Skip to main content
Log in

Recent advances in solid polymer electrolytes for lithium batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes are light-weight, flexible, and non-flammable and provide a feasible solution to the safety issues facing lithium-ion batteries through the replacement of organic liquid electrolytes. Substantial research efforts have been devoted to achieving the next generation of solid-state polymer lithium batteries. Herein, we provide a review of the development of solid polymer electrolytes and provide comprehensive insights into emerging developments. In particular, we discuss the different molecular structures of the solid polymer matrices, including polyether, polyester, polyacrylonitrile, and polysiloxane, and their interfacial compatibility with lithium, as well as the factors that govern the properties of the polymer electrolytes. The discussion aims to give perspective to allow the strategic design of state-of-the-art solid polymer electrolytes, and we hope it will provide clear guidance for the exploration of high-performance lithium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, Z.; Liu, Z. C.; Dudney, N. J.; Liang, C. D. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano 2013, 7, 2829–2833.

    Article  Google Scholar 

  2. Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430.

    Article  Google Scholar 

  3. Ellis, B. L.; Lee, K. T.; Nazar, L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 2010, 22, 691–714.

    Article  Google Scholar 

  4. Hernández-Burgos, K.; Rodríguez-Calero, G. G.; Zhou, W. D.; Burkhardt, S. E.; Abruña, H. D. Increasing the gravimetric energy density of organic based secondary battery cathodes using small radius cations (Li+ and Mg2+). J. Am. Chem. Soc. 2013, 135, 14532–14535.

    Article  Google Scholar 

  5. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

    Article  Google Scholar 

  6. Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

    Article  Google Scholar 

  7. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  Google Scholar 

  8. Grande, L.; Paillard, E.; Hassoun, J.; Park, J. B.; Lee, Y. J.; Sun, Y. K.; Passerini, S.; Scrosati, B. The lithium/air battery: Still an emerging system or a practical reality? Adv. Mater. 2015, 27, 784–830.

    Article  Google Scholar 

  9. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  10. Xu, W.; Wang, J. L.; Ding, F.; Chen. X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang. J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

    Article  Google Scholar 

  11. Li, Z.; Huang, J.; Yann Liaw, B.; Metzler, V.; Zhang, J. B. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 2014, 254, 168–182.

    Article  Google Scholar 

  12. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

    Article  Google Scholar 

  13. Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 2002, 148, 405–416.

    Article  Google Scholar 

  14. Murata, K. An overview of the research and development of solid polymer electrolyte batteries. Electrochim. Acta 1995, 40, 2177–2184.

    Article  Google Scholar 

  15. Shimonishi, Y.; Zhang, T.; Imanishi, N.; Im, D.; Lee, D. J.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Sammes, N. A. Study on lithium/air secondary batteries-stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J. Power Sources 2011, 196, 5128–5132.

    Article  Google Scholar 

  16. Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem., Int. Ed. 2007, 46, 7778–7781.

    Article  Google Scholar 

  17. Stramare, S.; Thangadurai, V.; Weppner, W. Lithium lanthanum titanates: A review. Chem. Mater. 2003, 15, 3974–3990.

    Article  Google Scholar 

  18. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686.

    Article  Google Scholar 

  19. Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater. 2005, 17, 918–921.

    Article  Google Scholar 

  20. Kim, J. G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M. J.; Chung, H. Y.; Park, S. A review of lithium and non-lithium based solid state batteries. J. Power Sources 2015, 282, 299–322.

    Article  Google Scholar 

  21. MacGlashan, G. S.; Andreev, Y. G.; Bruce, P. G. Structure of the polymer electrolyte poly(ethylene oxide)6: LiAsF6. Nature 1999, 398, 792–794.

    Article  Google Scholar 

  22. Ratner, M. A.; Johansson, P.; Shriver, D. F. Polymer electrolytes: Ionic transport mechanisms and relaxation coupling. MRS Bull. 2000, 25, 31–37.

    Article  Google Scholar 

  23. Quartarone, E.; Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 2011, 40, 2525–2540.

    Article  Google Scholar 

  24. Agrawal, R. C.; Pandey, G. P. Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview. J. Phys. D: Appl. Phys. 2008, 41, 223001.

    Article  Google Scholar 

  25. Ehrenstein, G. W.; Theriault, R. P. Polymeric materials: Structure, Properties, Applications; Hanser Carl GmbH + Co: Erlangen, 2001; pp 67–78.

    Book  Google Scholar 

  26. Armand, M. The history of polymer electrolytes. Solid State Ionics 1994, 69, 309–319.

    Article  Google Scholar 

  27. Baril, D.; Michot, C.; Armand, M. Electrochemistry of liquids vs. solids: Polymer electrolytes. Solid State Ionics 1997, 94, 35–47.

    Article  Google Scholar 

  28. Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer. 1973, 14, 589.

    Article  Google Scholar 

  29. Shi, J.; Vincent, C. A. The effect of molecular weight on cation mobility in polymer electrolytes. Solid State Ionics 1993, 60, 11–17.

    Article  Google Scholar 

  30. Lascaud, S.; Perrier, M.; Vallee, A.; Besner, S.; Prud’homme, J.; Armand, M. Phase-diagrams and conductivity behavior of poly(ethylene oxide)-molten salt rubbery electrolytes. Macromolecules 1994, 27, 7469–7477.

    Article  Google Scholar 

  31. Dollé, M.; Sannier, L.; Beaudoin, B.; Trentin, M.; Tarascon, J. M. Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochem. Solid-State Lett. 2002, 5, A286–A289.

    Article  Google Scholar 

  32. Rosso, M.; Brissot, C.; Teyssot, A.; Dollé, M.; Sannier, L.; Tarascon, J. M.; Bouchet, R.; Lascaud, S. Dendrite shortcircuit and fuse effect on Li/polymer/Li cells. Electrochim. Acta 2006, 51, 5334–5340.

    Article  Google Scholar 

  33. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394, 456–458.

    Article  Google Scholar 

  34. Yang, X. Q.; Lee, H. S.; Hanson, L.; McBreen, J.; Okamoto, Y. Development of a new plasticizer for poly(ethylene oxide)-based polymer electrolyte and the investigation of their ion-pair dissociation effect. J. Power Sources 1995, 54, 198–204.

    Article  Google Scholar 

  35. Lago, N.; Garcia-Calvo, O.; Lopez del Amo, J. M.; Rojo, T.; Armand, M. All-solid-state lithium-ion batteries with grafted ceramic nanoparticles dispersed in solid polymer electrolytes. ChemSusChem 2015, 8, 3039–3043.

    Article  Google Scholar 

  36. Manuel Stephan, A.; Nahm, K. S. Review on composite polymer electrolytes for lithium batteries. Polymer 2006, 47, 5952–5964.

    Article  Google Scholar 

  37. Do, N. S. T.; Schaetzl, D. M.; Dey, B.; Seabaugh, A. C.; Fullerton-Shirey, S. K. Influence of Fe2O3 nanofiller shape on the conductivity and thermal properties of solid polymer electrolytes: Nanorods versus nanospheres. J. Phys. Chem. C 2012, 116, 21216–21223.

    Article  Google Scholar 

  38. Tominaga, Y.; Yamazaki, K. Fast Li-ion conduction in poly(ethylenecarbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem. Commun. 2014, 50, 4448–4450.

    Article  Google Scholar 

  39. Fu, K.; Gong, Y. H.; Dai, J. Q.; Gong, A.; Han, X. G.; Yao, Y. G.; Wang, C. W.; Wang, Y. B.; Chen, Y. N.; Yan, C. Y. et al. Flexible, solid-State, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 2016, 113, 7094–7099.

    Article  Google Scholar 

  40. Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465.

    Article  Google Scholar 

  41. Jung, Y. C.; Lee, S. M.; Choi, J. H.; Jang, S. S.; Kim, D. W. All solid-state lithium batteries assembled with hybrid solid electrolytes. J. Electrochem. Soc. 2015, 162, A704–A710.

    Article  Google Scholar 

  42. Tan, R.; Gao, R. T.; Zhao, Y.; Zhang, M. J.; Xu, J. Y.; Yang, J. L.; Pan F. Novel organic-inorganic hybrid electrolyte to enable LiFePO4 quasi-solid-state Li-ion batteries performed highly around room temperature. ACS Appl. Mater. Interfaces 2016, 8, 31273–31280.

    Article  Google Scholar 

  43. Capuano, F.; Croce, F.; Scrosati, B. Composite polymer electrolytes. J. Electrochem. Soc. 1991, 138, 1918–1922.

    Article  Google Scholar 

  44. Gang, W.; Roos, J.; Brinkmann, D.; Capuano, F.; Croce, F.; Scrosati, B. Comparison of NMR and conductivity in (PEP)8LiClO4+γ-LiAlO2. Solid State Ionics 1992, 53–56, 1102–1105.

    Article  Google Scholar 

  45. Appetecchi, G. B.; Scaccia, S.; Passerini, S. Investigation on the stability of the lithium-polymer electrolyte interface. J. Electrochem. Soc. 2000, 147, 4448–4452.

    Article  Google Scholar 

  46. Appetecchi, G. B.; Alessandrini, F.; Carewska, M.; Caruso, T.; Prosini, P. P.; Scaccia, S.; Passerini, S. Investigation on lithium-polymer electrolyte batteries. J. Power Sources 2001, 97–98, 790–794.

    Article  Google Scholar 

  47. Hu, L. F.; Tang, Z. L.; Zhang, Z. T. New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4. J. Power Sources 2007, 166, 226–232.

    Article  Google Scholar 

  48. Kumar, J.; Rodrigues, S. J.; Kumar, B. Interface-mediated electrochemical effects in lithium/polymer-ceramic cells. J. Power Sources 2001, 195, 327–334.

    Article  Google Scholar 

  49. Kim, Y. W.; Lee, W.; Choi, B. K. Relation between glass transition and melting of PEO–salt complexes. Electrochim. Acta 2000, 45, 1473–1477.

    Article  Google Scholar 

  50. Capiglia, C.; Yang, J.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O. Composite polymer electrolyte: The role of filler grain size. Solid State Ionics 2002, 154–155, 7–14.

    Article  Google Scholar 

  51. Itoh, T.; Miyamura, Y.; Ichikawa, Y.; Uno, T.; Kubo, M.; Yamamoto, O. Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer. J. Power Sources, 2003, 119–121, 403–408.

    Article  Google Scholar 

  52. Ito, Y.; Kawakubo, M.; Ueno, M.; Okuma, H.; Si, Q.; Kobayashi, T.; Hanai, K.; Imanishi, N.; Hirano, A.; Phillipps, M. B. et al. Carbon anodes for solid polymer electrolyte lithium-ion batteries. J. Power Sources 2012, 214, 84–90.

    Article  Google Scholar 

  53. Yuan, M. Y.; Erdman, J.; Tang, C. Y.; Ardebili, H. High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Adv. 2014, 4, 59637–59642.

    Article  Google Scholar 

  54. Shim, J.; Kim, D. G.; Kim, H. J.; Lee, J. H.; Baik, J. H.; Lee, J. C. Novel composite polymer electrolytes containing poly(ethylene glycol)-grafted graphene oxide for all-solidstate lithium-ion battery applications. J. Mater. Chem. A 2014, 2, 13873–13883.

    Article  Google Scholar 

  55. Ye, Y. S.; Wang, H.; Bi, S. G.; Xue, Y.; Xue, Z. G.; Zhou, X. P.; Xie, X. L.; Mai, Y. W. High performance composite polymer electrolytes using polymeric ionic liquid-functionalized graphene molecular brushes. J. Mater. Chem. A 2015, 3, 18064–18073.

    Article  Google Scholar 

  56. Du, M. L.; Guo, B. C.; Jia, D. M. Newly emerging applications of halloysite nanotubes: A review. Polym. Int. 2010, 59, 574–582.

    Google Scholar 

  57. Lin, Y.; Wang, X. M.; Liu, J.; Miller, J. D. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy 2017, 31, 478–485.

    Article  Google Scholar 

  58. Cui, M. Q.; Lee, P. S. Solid polymer electrolyte with high ionic conductivity via layer-by-layer deposition. Chem. Mater. 2016, 28, 2934–2940.

    Article  Google Scholar 

  59. Pan, Q. W.; Smith, D. M.; Qi, H.; Wang, S. J.; Li, C. Y. Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv. Mater. 2015, 27, 5995–6001.

    Article  Google Scholar 

  60. Zhang, C.; Lin, Y.; Liu, J. Sulfur double locked by a macro-structural cathode and a solid polymer electrolyte for lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 10760–10766.

    Article  Google Scholar 

  61. Kumar, R. S.; Raja, M.; Kulandainathan, M. A.; Stephan, A. M. Metal organic framework-laden composite polymer electrolytes for efficient and durable all-solid-state-lithium batteries. RSC Adv. 2014, 4, 26171–26175.

    Article  Google Scholar 

  62. Devaux, D.; Glé, D.; Phan, T. T.; Gigmes, D.; Giroud, E.; Deschamps, M.; Denoyel, R.; Bouchet R. Optimization of block copolymer electrolytes for lithium metal batteries. Chem. Mater. 2015, 27, 4682–4692.

    Article  Google Scholar 

  63. Zardalidis, G.; Ioannou, E. F.; Gatsouli, K. D.; Pispas, S.; Kamitsos, E. I.; Floudas, G. Ionic conductivity and selfassembly in poly(isoprene-b-ethylene oxide) electrolytes doped with LiTf and EMITf. Macromolecules 2015, 48, 1473–1482.

    Article  Google Scholar 

  64. Porcarelli, L.; Gerbaldi, C.; Bella F.; Nair, J. R. Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci. Rep. 2016, 6, 19892.

    Article  Google Scholar 

  65. Sadoway, D. R. Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries. J. Power Sources 2004, 129, 1–3.

    Article  Google Scholar 

  66. Kurian, M.; Galvin, M. E.; Trapa, P. E.; Sadoway, D. R.; Mayes, A. M. Single-ion conducting polymer–silicate nanocomposite electrolytes for lithium battery applications. Electrochim. Acta 2005, 50, 2125–2134.

    Article  Google Scholar 

  67. Benrabah, D.; Sylla, S.; Alloin, F.; Sanchez, J. Y.; Armand, M. Perfluorosulfonate-polyether based single ion conductors. Electrochim. Acta 1995, 40, 2259–2264.

    Article  Google Scholar 

  68. Shi, Q. R.; Xue, L. X.; Qin, D. J.; Du, B.; Wang, J.; Chen, L. Q. Single ion solid-state composite electrolytes with high electrochemical stability based on a poly(perfluoroalkylsulfonyl)- imide ionene polymer. J. Mater. Chem. A 2014, 2, 15952–15957.

    Article  Google Scholar 

  69. Ma, Q.; Zhang, H.; Zhou, C. W.; Zheng, L. P.; Cheng, P. F.; Nie, J.; Feng, W. F.; Hu, Y. S.; Li, H.; Huang, X. J. et al. Single Lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem., Int. Ed. 2016, 55, 2521–2525.

    Article  Google Scholar 

  70. Aravindan, V.; Vickraman, P.; Sivashanmugam, A.; Thirunakaran, R.; Gopukumar, S. Comparison among the performance of LiBOB, LiDFOB and LiFAP impregnated polyvinylidenefluoride-hexafluoropropylene nanocomposite membranes by phase inversion for lithium batteries. Curr. Appl. Phys. 2013, 13, 293–297.

    Article  Google Scholar 

  71. Ue, M.; Takeda, M.; Takehara, M.; Mori, S. Electrochemical properties of quaternary ammonium salts for electrochemical capacitors. J. Electrochem.Soc. 1997, 144, 2684–2688.

    Article  Google Scholar 

  72. Ue, M.; Murakami, A.; Nakamura, S. Anodic stability of several anions examined by ab initio molecular orbital and density functional theories. J. Electrochem. Soc. 2002, 149, A1572–A1577.

    Article  Google Scholar 

  73. Dominey, L. A.; Koch, V. R.; Blakley, T. J. Thermally stable lithium salts for polymer electrolytes. Electrochim. Acta 1992, 37, 1551–1554.

    Article  Google Scholar 

  74. Ma, Q.; Qi, X. G.; Tong, B.; Zheng, Y. H.; Feng, W. F.; Nie, J.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q. et al. Novel Li[(CF3SO2)(n-C4F9SO2)N]-based polymer electrolytes for solid-state lithium batteries with superior electrochemical performance. ACS Appl. Mater. Interfaces 2016, 8, 29705–29712.

    Article  Google Scholar 

  75. Chakrabarti, A.; Filler, R.; Mandal, B. K. Synthesis and properties of a new class of fluorine-containing dilithium salts for lithium-ion batteries. Solid State Ionics 2010, 180, 1640–1645.

    Article  Google Scholar 

  76. Elmér, A. M.; Jannasch, P. Synthesis and characterization of poly(ethylene oxide-co-ethylene carbonate) macromonomers and their use in the preparation of crosslinked polymer electrolytes. J. Polym. Sci. Pol. Chem. 2006, 44, 2195–2205.

    Article  Google Scholar 

  77. Kwon, S. J.; Kim, D. G.; Shim, J.; Lee, J. H.; Baik, J. H.; Lee, J. C. Preparation of organic/inorganic hybrid semiinterpenetrating network polymer electrolytes based on poly(ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures. Polymer 2014, 55, 2799–2808.

    Article  Google Scholar 

  78. Inoue, S.; Koinuma, H.; Tsuruta, T. Copolymerization of carbon dioxide and epoxide. J. Polym. Sci., Part B: Polym. Lett. 1969, 7, 287–292.

    Article  Google Scholar 

  79. Okumura, T.; Nishimura, S. Lithium ion conductive properties of aliphatic polycarbonate. Solid State Ionics 2014, 267, 68–73.

    Article  Google Scholar 

  80. Tominaga, Y.; Yamazaki, K.; Nanthana, V. Effect of anions on lithium ion conduction in poly(ethylene carbonate)-based polymer electrolytes. J. Electrochem. Soc. 2015, 162, A3133–A3136.

    Article  Google Scholar 

  81. Kimura, K.; Yajima, M.; Tominaga, Y. C. A highlyconcentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochem. Commun. 2016, 66, 46–48.

    Article  Google Scholar 

  82. Fonseca, C. P.; Rosa, D. S.; Gaboardi, F.; Neves, S. Development of a biodegradable polymer electrolyte for rechargeable batteries. J. Power Sources 2006, 155, 381–384.

    Article  Google Scholar 

  83. Fonseca, C. P.; Neves S. Electrochemical properties of a biodegradable polymer electrolyte applied to a rechargeable lithium battery. J. Power Sources 2006, 159, 712–716.

    Article  Google Scholar 

  84. Smith, M. J.; Silva, M. M.; Cerqueira, S.; MacCallum, J. R. Preparation and characterization of a lithium ion conducting electrolyte based on poly(trimethylene carbonate). Solid State Ionics 2001, 140, 345–351.

    Article  Google Scholar 

  85. Silva, M. M.; Barros, S. C.; Smith, M. J.; MacCallum, J. R. Study of novel lithium salt-based, plasticized polymer electrolytes. J. Power Sources 2002, 111, 52–57.

    Article  Google Scholar 

  86. MacCallum, J. R.; Silva, M. M.; Barros, S. C.; Smith, M. J.; Fernandes, E. Advanced batteries and supercapacitors. In The Electrochemical Society Proceedings Series. Nazri, G.; Koetz, R.; Scrosati, B.; Moro, P. A.; Takeuchi, E. S., Eds.; ECS Proceedings: Scotland, 2003; pp 476.

    Google Scholar 

  87. Zhang, S. S.; Xu, K.; Jow, T. R. Study of LiBF4 as an electrolyte salt for a Li-ion battery. J. Electrochem. Soc. 2002, 149, A586–A590.

    Article  Google Scholar 

  88. Silva, M. M.; Barros, S. C.; Smith, M. J.; MacCallum, J. R. Characterization of solid polymer electrolytes based on poly(trimethylenecarbonate) and lithium tetrafluoroborate. Electrochim. Acta 2004, 49, 1887–1891.

    Article  Google Scholar 

  89. Silva, M. M.; Barbosa, P.; Evans, A.; Smith, M. J. Novel solid polymer electrolytes based on poly(trimethylene carbonate) and lithium hexafluoroantimonate. Solid State Sci. 2006, 8, 1318–1321.

    Article  Google Scholar 

  90. Barbosa, P. C.; Rodrigues, L. C.; Silva, M. M.; Smith, M. J. Characterization of pTMCnLiPF6 solid polymer electrolytes. Solid State Ionics 2011, 193, 39–42.

    Article  Google Scholar 

  91. Sun, B.; Mindemark, J.; Edström, K.; Brandell, D. Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ionics 2014, 262, 738–742.

    Article  Google Scholar 

  92. Abraham, D. P.; Reynolds, E. M.; Schultz, P. L.; Jansen, A. N.; Dees, D. W. Temperature dependence of capacity and impedance data from fresh and aged high-power lithium-ion cells. J. Electrochem. Soc. 2006, 153, A1610–A1616.

    Article  Google Scholar 

  93. Lee, Y. G.; Cho, J. 3-Chloroanisole for overcharge protection of a Li-ion cell. Electrochim. Acta 2007, 52, 7404–7408.

    Article  Google Scholar 

  94. Sun, B.; Mindemark, J.; Edström, K.; Brandell, D. Realization of high performance polycarbonate-based Li polymer batteries. Electrochem. Commun. 2015, 52, 71–74.

    Article  Google Scholar 

  95. Mindemark, J.; Sun, B.; Törmä, E.; Brandell, D. Highperformance solid polymer electrolytes for lithium batteries operational at ambient temperature. J. Power Sources 2015, 298, 166–170.

    Article  Google Scholar 

  96. Mindemark, J.; Törmä, E.; Sun, B.; Brandell, D. Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries. Polymer 2015, 63, 91–98.

    Article  Google Scholar 

  97. Yu, X. Y.; Xiao, M.; Wang, S. J.; Zhao, Q. Q.; Meng, Y. Z. Fabrication and characterization of PEO/PPC polymer electrolyte for lithium-ion battery. J. Appl. Polym. Sci. 2010, 115, 2718–2722.

    Article  Google Scholar 

  98. Zhou, D.; Zhou, R.; Chen, C. X.; Yee, W. A.; Kong, J. H.; Ding, G. Q.; Lu X. H. Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices. J. Phys. Chem. B 2013, 117, 7783–7789.

    Article  Google Scholar 

  99. Zhang, J. J.; Zhao, J. H.; Yue, L. P.; Wang, Q. F.; Chai, J. C.; Liu, Z. H.; Zhou, X. H.; Li, H.; Guo, Y. G.; Cui, G. L. et al. Safety-reinforced poly(propylene carbonate)-based all-solidstate polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv. Energy Mater. 2015, 5, 1501082.

    Article  Google Scholar 

  100. Zhang, J. J.; Zang, X.; Wen, H. J.; Dong, T. T.; Chai, J. C.; Li, Y.; Chen, B. B.; Zhao, J. W.; Dong, S. M.; Ma, J. et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A. 2017, 5, 4940–4948.

    Article  Google Scholar 

  101. Deng, K. R.; Wang, S. J.; Ren, S.; Han, D. M.; Xiao, M.; Meng, Y. Z. A Novel single-ion-conducting polymer electrolyte derived from CO2-based multifunctional polycarbonate. ACS Appl. Mater. Interfaces 2016, 8, 33642–33648.

    Article  Google Scholar 

  102. Chen, R. J.; Liu, F.; Chen, Y.; Ye, Y. S.; Huang, Y. X.; Wu, F.; Li, L. An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. J. Power Sources 2016, 306, 70–77.

    Article  Google Scholar 

  103. Alarco, P. J.; Abu-lebdeh, Y.; Abouimrane, A.; Armand, M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater. 2004, 3, 476–481.

    Article  Google Scholar 

  104. Ha, H. J.; Kwon, Y. H.; Kim, J. Y.; Lee S. Y. A selfstanding, UV-cured polymer networks-reinforced plastic crystal composite Electrolyte for a lithium-ion battery. Electrochim. Acta 2011, 57, 40–45.

    Article  Google Scholar 

  105. Choi, K. H.; Kim, S. H.; Ha, H. J.; Kil, E. H.; Lee, C. K.; Lee, S. B.; Shim, J. K.; Lee, S. Y. Compliant polymer network-mediated fabrication of a bendable plastic crystal polymer electrolyte for flexible lithium-ion batteries. J. Mater. Chem. A 2013, 1, 5224–5231.

    Article  Google Scholar 

  106. Choi, K. H.; Cho, S. J.; Kim, S. H.; Kwon, Y. H.; Kim, J. Y.; Lee, S. Y. Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 44–52.

    Article  Google Scholar 

  107. Kim, S. H.; Choi, K. H.; Cho, S. J.; Park, J. S.; Cho, K. Y.; Lee, C. K.; Lee, S. B.; Shim, J. K.; Lee, S. Y. A shapedeformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries. J. Mater. Chem. A 2014, 2, 10854–10861.

    Article  Google Scholar 

  108. Liu, K.; Ding, F.; Liu, J. Q.; Zhang, Q. Q.; Liu, X. J.; Zhang, J. L.; Xu, Q. A Cross-linking succinonitrile-based composite polymer electrolyte with uniformly dispersed vinyl-functionalized SiO2 particles for Li-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 23668–23675.

    Article  Google Scholar 

  109. Liu, K.; Ding, F.; Lu, Q. W.; Liu, J. Q.; Zhang, Q. Q.; Liu, X. J.; Xu, Q. A novel plastic crystal composite polymer electrolyte with excellent mechanical bendability and electrochemical performance for flexible lithium-ion batteries. Solid State Ionics 2016, 289, 1–8.

    Article  Google Scholar 

  110. Rahman, M. Y. A.; Ahmad, A.; Ismail, L. H. C.; Salleh, M. M. Fabrication and characterization of a solid polymeric electrolyte of PAN-TiO2-LiClO4. J. Appl. Polym. Sci. 2010, 115, 2144–2148.

    Article  Google Scholar 

  111. Wang, Z. X.; Hu, Y. S.; Chen, L. Q. Some studies on electrolytes for lithium ion batteries. J. Power Sources 2005, 146, 51–57.

    Article  Google Scholar 

  112. Chen-Yang, Y. W.; Chen, H. C.; Lin, F. J.; Chen, C. C. Polyacrylonitrile electrolytes: 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO4 and α-Al2O3. Solid State Ionics 2002, 150, 327–335.

    Article  Google Scholar 

  113. Chen, Y. T.; Chuang, Y. C.; Su, J. H.; Yu, H. C.; Chen-Yang, Y. W. High discharge capacity solid composite polymer electrolyte lithium battery. J. Power Sources 2011, 196, 2802–2809.

    Article  Google Scholar 

  114. Ramesh, S.; Ng, H. M. An investigation on PAN-PVCLiTFSI based polymer electrolytes system. Solid State Ionics 2011, 192, 2–5.

    Article  Google Scholar 

  115. Zhou, D.; He, Y. B.; Liu, R. L.; Liu, M.; Du, H. D.; Li, B. H.; Cai, Q.; Yang, Q. H.; Kang, F. Y. In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1500353.

    Article  Google Scholar 

  116. Nagaoka, K.; Naruse, H.; Shinohara, I.; Watanabe, M. High ionic conductivity in poly(dimethyl siloxane-co-ethylene oxide) dissolving lithium perchlorate. J. Polym. Sci. Polym. Lett. Ed. 1984, 22, 659–663.

    Article  Google Scholar 

  117. Fish, D.; Khan, I. M.; Smid, J. Conductivity of solid complexes of lithium perchlorate with poly{[ω- methoxyhexa(oxyethylene)ethoxy]methylsiloxane}. Makromol. Chem. Rapid Commun. 1986, 7, 115–120.

    Article  Google Scholar 

  118. Li, J.; Lin, Y.; Yao, H. H.; Yuan, C. F.; Liu J. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane. ChemSusChem 2014, 7, 1901–1908.

    Article  Google Scholar 

  119. Boaretto, N.; Bittner, A.; Brinkmann, C.; Olsowski, B. E.; Schulz, J.; Seyfried, M.; Vezzù, K.; Popall, M.; Di Noto, V. Highly conducting 3D-hybrid polymer electrolytes for lithium batteries based on siloxane networks and crosslinked organic polar interphases. Chem. Mater. 2014, 26, 6339–6350.

    Article  Google Scholar 

  120. Han, P. F.; Zhu, Y. W.; Liu, J. An all-solid-state lithium ion battery electrolyte membrane fabricated by hot-pressing method. J. Power Sources 2015, 284, 459–465.

    Article  Google Scholar 

  121. Lin, Y.; Li, J.; Liu, K.; Liu, Y. X.; Liu J.; Wang, X. M. Unique starch polymer electrolyte for high capacity allsolid- state lithium sulfur battery. Green Chem. 2016, 18, 3796–3803.

    Article  Google Scholar 

  122. Noor, I. S.; Majid, S. R.; Arof, A. K. Poly(vinyl alcohol)–LiBOB complexes for lithium-air cells. Electrochim. Acta 2013, 102, 149–160.

    Article  Google Scholar 

  123. Luther, T. A.; Stewart, F. F.; Budzien, J. L.; LaViolette, R. A. Bauer, W. F.; Harrup, M. K.; Allen C. W.; Elayan, A. On the mechanism of ion transport through polyphosphazene solid polymer electrolytes: NMR, IR, and Raman spectroscopic studies and computational analysis of 15N-labeled polyphosphazenes. J. Phys. Chem. B 2003, 107, 3168–3176.

    Article  Google Scholar 

  124. Blonsky, P. M.; Shriver, D. F.; Austin, P.; Allcock, H. R. Complex formation and ionic conductivity of polyphosphazene solid electrolytes. Solid State Ionics 1986, 18–19, 258–264.

    Article  Google Scholar 

  125. Yi, J.; Zhou, H. S. A unique hybrid quasi-solid-state electrolyte for Li–O2 batteries with improved cycle life and safety. ChemSusChem 2016, 9, 2391–2396.

    Article  Google Scholar 

  126. Liu, W.; Liu, N.; Sun, J.; Hsu, P. C.; Li, Y. Z.; Lee, H. W.; Cui Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 2015, 15, 2740–2745.

    Article  Google Scholar 

  127. Zhao, Y. R.; Wu, C.; Peng, G.; Chen, X. T.; Yao, X. Y.; Bai, Y.; Wu, F.; Chen, S. J.; Xu X. X. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J. Power Sources 2016, 301, 47–53.

    Article  Google Scholar 

  128. Peled, E.; Golodnitsky, D.; Ardel, G.; Eshkenazy, V. The SEI model-application to lithium-polymer electrolyte batteries. Electrochim. Acta 1995, 40, 2197–2204.

    Article  Google Scholar 

  129. Peled, E.; Golodnitsky, D.; Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997, 144, L208–L210.

    Article  Google Scholar 

  130. Le Granvalet-Mancini, M.; Hanrath, T.; Teeters, D. Characterization of the passivation layer at the polymer electrolyte/lithium electrode interface. Solid State Ionics 2000, 135, 283–290.

    Article  Google Scholar 

  131. Ismail, I.; Noda, A.; Nishimoto, A.; Watanabe, M. XPS study of lithium surface after contact with lithium-salt doped polymer electrolytes. Electrochim. Acta 2001, 46, 1595–1603.

    Article  Google Scholar 

  132. Xu, C.; Sun, B.; Gustafsson, T.; Edström, K.; Brandell D.; Hahlin, M. Interface layer formation in solid polymer electrolyte lithium batteries: An XPS study. J. Mater. Chem. A 2014, 2, 7256–7264.

    Article  Google Scholar 

  133. Sun, B.; Xu, C.; Mindemark, J.; Gustafsson, T.; Edström, K.; Brandell, D. At the polymer electrolyte interfaces: The role of the polymer host in interphase layer formation in Li-batteries. J. Mater. Chem. A 2015, 3, 13994–14000.

    Article  Google Scholar 

  134. Li, Q.; Sun, H. Y.; Takeda, Y.; Imanishi, N.; Yang, J.; Yamamoto, O. Interface properties between a lithium metal electrode and a poly(ethylene oxide) based composite polymer electrolyte. J. Power Sources 2001, 94, 201–205.

    Article  Google Scholar 

  135. Bouchet, R.; Lascaud, S.; Rosso, M. An EIS study of the anode Li/PEO-LiTFSI of a Li polymer battery. J. Electrochem. Soc. 2003, 150, A1385–A1389.

    Article  Google Scholar 

  136. Wang, C. H.; Yang, Y. F.; Liu, X. J.; Zhong, H.; Xu, H.; Xu, Z. B.; Shao, H. X.; Ding, F. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 2017, 9, 13694–13702.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of National Key Laboratory of Science and Technology on Power Sources of China (No. 9140C16020212-DZ2801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Liu, K., Ding, F. et al. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 10, 4139–4174 (2017). https://doi.org/10.1007/s12274-017-1763-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1763-4

Keywords

Navigation