Skip to main content
Log in

Chemically doped macroscopic graphene fibers with significantly enhanced thermoelectric properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible wearable electronics, when combined with outstanding thermoelectric properties, are promising candidates for future energy harvesting systems. Graphene and its macroscopic assemblies (e.g., graphene-based fibers and films) have thus been the subject of numerous studies because of their extraordinary electrical and mechanical properties. However, these assemblies have not been considered suitable for thermoelectric applications owing to their high intrinsic thermal conductivity. In this study, bromine doping is demonstrated to be an effective method for significantly enhancing the thermoelectric properties of graphene fibers. Doping enhances phonon scattering due to the increased defects and thus decreases the thermal conductivity, while the electrical conductivity and Seebeck coefficient are increased by the Fermi level downshift. As a result, the maximum figure of merit is 2.76 × 10–3, which is approximately four orders of magnitude larger than that of the undoped fibers throughout the temperature range. Moreover, the room temperature power factor is shown to increase up to 624 μW·m–1·K–2, which is higher than that of any other material solely composed of carbon nanotubes and graphene. The enhanced thermoelectric properties indicate the promising potential for graphene fibers in wearable energy harvesting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv.Mater. 2014, 26, 5310–5336.

    Article  Google Scholar 

  2. Li, Z.; Liu, Z.; Sun, H. Y.; Gao, C. Superstructured assembly of nanocarbons: Fullerenes, nanotubes, and graphene. Chem. Rev. 2015, 115, 7046–7117.

    Article  Google Scholar 

  3. Xu, Z.; Gao, C. Graphene in macroscopic order: Liquid crystals and wet-spun fibers. Acc. Chem. Res. 2014, 47, 1267–1276.

    Article  Google Scholar 

  4. Cheng, H. H.; Hu, C. G.; Zhao, Y.; Qu, L.T. Graphene fiber: A new material platform for unique applications. NPG Asia Mater. 2014, 6, e113.

    Article  Google Scholar 

  5. Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2, 571.

    Article  Google Scholar 

  6. Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun, H. Y.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

    Article  Google Scholar 

  7. Liu, Y. J.; Xu, Z.; Gao, W. W.; Cheng, Z. D.; Gao, C. Graphene and other 2D colloids: Liquid crystalsand macroscopic fibers. Adv. Mater. 2017, 29, 1606794.

    Article  Google Scholar 

  8. Liu, Y. J.; Liang, H.; Xu, Z.; Xi, J. B.; Chen, G. F.; Gao, W. W.; Xue, M. Q.; Gao, C. Superconducting continuous graphene fibers via calcium intercalation. ACS Nano 2017, 11, 4301–4306, DOI: 10.1021/acsnano.7b01491.

    Article  Google Scholar 

  9. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    Article  Google Scholar 

  10. Ghosh, S.; Bao, W. Z.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 2010, 9, 555–558.

    Article  Google Scholar 

  11. Mazzamuto, F.; Nguyen, V. H.; Apertet, Y.; Caër, C.; Chassat, C.; Saint-Martin, J.; Dollfus, P. Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 2011, 83, 235426.

    Article  Google Scholar 

  12. Chang, P. H.; Nikolić, B. K. Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics. Phys. Rev. B 2012, 86, 041406.

    Article  Google Scholar 

  13. Sevinçli, H.; Sevik, C.; Çağın, T.; Cuniberti, G. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons. Sci. Rep. 2013, 3, 1228.

    Article  Google Scholar 

  14. Haskins, J.; Kınacı, A.; Sevik, C.; Sevinçli, H.; Cuniberti, G.; Çağın, T. Control of thermal and electronic transport in defect-engineered graphene nanoribbons. ACS Nano 2011, 5, 3779–3787.

    Article  Google Scholar 

  15. Chen, S. S.; Wu, Q. Z.; Mishra, C.; Kang, J. Y.; Zhang, H. J.; Cho, K.; Cai, W. W.; Balandin, A. A.; Ruoff, R. S. Thermal conductivity of isotopically modified graphene. Nat. Mater. 2012, 11, 203–207.

    Article  Google Scholar 

  16. Wei, N.; Xu, L. Q.; Wang, H. Q.; Zheng, J. C. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility. Nanotechnology 2011, 22, 105705.

    Article  Google Scholar 

  17. Avery, A. D.; Zhou, B. H.; Lee, J.; Lee, E. S.; Miller, E. M.; Ihly, R.; Wesenberg, D.; Mistry, K. S.; Guillot, S. L.; Zink, B. L. et al. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat. Energy 2016, 1, 16033.

    Article  Google Scholar 

  18. Crispin, X. Thermoelectrics: Carbon nanotubes get high. Nat. Energy 2016, 1, 16037.

    Article  Google Scholar 

  19. Ma, W. G.; Liu, Y. J.; Yan, S.; Miao, T. T.; Shi, S. Y.; Yang, M. C.; Zhang, X.; Gao, C. Systematic characterization of transport and thermoelectric properties of a macroscopic graphene fiber. Nano Res. 2016, 9, 3536–3546.

    Article  Google Scholar 

  20. Liu, Y. J.; Xu, Z.; Zhan, J. M.; Li, P. G.; Gao, C. Superb electrically conductive graphene fibers via doping strategy. Adv. Mater. 2016, 28, 7941–7947.

    Article  Google Scholar 

  21. Janas, D.; Herman, A. P.; Boncel, S.; Koziol, K. K. K. Iodine monochloride as a powerful enhancer of electrical conductivity of carbon nanotube wires. Carbon 2014, 73, 225–233.

    Article  Google Scholar 

  22. Cruz-Silva, R.; Morelos-Gomez, A.; Kim, H. I.; Jang, H. K.; Tristan, F.; Vega-Diaz, S.; Rajukumar, L. P.; Elías, A. L.; Perea-Lopez, N.; Suhr, J. et al. Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling. ACS Nano 2014, 8, 5959–5967.

    Article  Google Scholar 

  23. Xu, Z.; Liu, Y. J.; Zhao, X. L.; Peng, L.; Sun, H. Y.; Xu, Y.; Ren, X. B.; Jin, C. H.; Xu, P.; Wang, M. et al. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 2016, 28, 6449–6456.

    Article  Google Scholar 

  24. Mansour, A. E.; Dey, S.; Amassian, A.; Tanielian, M. H. Bromination of graphene: A new route to making high performance transparent conducting electrodes with low optical losses. ACS Appl. Mater. Interfaces 2015, 7, 17692–17699.

    Article  Google Scholar 

  25. Xu, Z.; Liu, Z.; Sun, H. Y.; Gao, C. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv. Mater. 2013, 25, 3249–3253.

    Article  Google Scholar 

  26. Aboutalebi, S. H.; Jalili, R.; Esrafilzadeh, D.; Salari, M.; Gholamvand, Z.; Yamini, S. A.; Konstantinov, K.; Shepherd, R. L.; Chen, J.; Moulton, S. E. et al. High-performance multifunctional graphene yarns: Toward wearable all-carbon energy storage textiles. ACS Nano 2014, 8, 2456–2466.

    Article  Google Scholar 

  27. Poh, H. L.; Šimek, P.; Sofer, Z.; Pumera, M. Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere. Chem. Eur. J. 2013, 19, 2655–2662.

    Article  Google Scholar 

  28. Xu, Z.; Zhang, Y.; Li, P. G.; Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 2012, 6, 7103–7113.

    Article  Google Scholar 

  29. Klimenko, I. V.; Zhuravleva, T. S.; Geskin, V. M.; Jawhary, T. Study of the bromination of pitch-based carbon fibres. Mater. Chem. Phys. 1998, 56, 14–20.

    Article  Google Scholar 

  30. Rao, A. M.; Eklund, P. C.; Bandow, S.; Thess, A.; Smalley, R. E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 1997, 388, 257–259.

    Article  Google Scholar 

  31. Dresselhaus, M. S.; Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 2002, 51, 1–186.

    Article  Google Scholar 

  32. Zhao, W. J.; Tan, P. H.; Liu, J.; Ferrari, A. C. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. J. Am.Chem. Soc. 2011, 133, 5941–5946.

    Article  Google Scholar 

  33. Fujii, M.; Zhang, X.; Xie, H. Q.; Ago, H.; Takahashi, K.; Ikuta, T.; Abe, H.; Shimizu, T. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 2005, 95, 065502.

    Article  Google Scholar 

  34. Miao, T. T.; Ma, W. G.; Zhang, X.; Wei, J. Q.; Sun, J. L. Significantly enhanced thermoelectric properties of ultralong double-walled carbon nanotube bundle. Appl. Phys. Lett. 2013, 102, 053105.

    Article  Google Scholar 

  35. Shi, L.; Li, D. Y.; Yu, C.; Jang, W.; Kim, D.; Yao, Z.; Kim, P.; Majumdar, A. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 2003, 125, 881–888.

    Article  Google Scholar 

  36. Hone, J.; Llaguno, M. C.; Nemes, N. M.; Johnson, A. T.; Fischer, J. E.; Walters, D. A.; Casavant, M. J.; Schmidt, J.; Smalley, R.E. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 2000, 77, 666–668.

    Article  Google Scholar 

  37. Jin, R.; Zhou, Z. X.; Mandrus, D.; Ivanov, I. N.; Eres, G.; Howe, J. Y.; Puretzky, A. A.; Geohegan, D. B. The effect of annealing on the electrical and thermal transport properties of macroscopic bundles of long multi-wall carbon nanotubes. Physica B 2007, 388, 326–330.

    Article  Google Scholar 

  38. Zhang, H. L.; Li, J. F.; Zhang, B. P.; Yao, K. F.; Liu, W. S.; Wang, H. Electrical and thermal properties of carbon nanotube bulk materials: Experimental studies for the 328–958 K temperature range. Phys. Rev. B 2007, 75, 205407.

    Article  Google Scholar 

  39. Hewitt, C. A.; Kaiser, A. B.; Craps, M.; Czerw, R.; Carroll, D. L. Negative thermoelectric power from large diameter multiwalled carbon nanotubes grown at high chemical vapor deposition temperatures. J. Appl. Phys. 2013, 114, 083701.

    Article  Google Scholar 

  40. Nonoguchi, Y.; Ohashi, K.; Kanazawa, R.; Ashiba, K.; Hata, K.; Nakagawa, T.; Adachi, C.; Tanase, T.; Kawai, T. Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci. Rep. 2013, 3, 3344.

    Article  Google Scholar 

  41. Hewitt, C. A.; Craps, M.; Czerw, R.; Carroll, D. L. The effects of high energy probe sonication on the thermoelectric power of large diameter multiwalled carbon nanotubes synthesized by chemical vapor deposition. Synth. Met. 2013, 184, 68–72.

    Article  Google Scholar 

  42. Kim, S. L.; Choi, K.; Tazebay, A.; Yu, C. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity. ACS Nano 2014, 8, 2377–2386.

    Article  Google Scholar 

  43. Nakai, Y.; Honda, K.; Yanagi, K.; Kataura, H.; Kato, T.; Yamamoto, T.; Maniwa, Y. Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film. Appl. Phys. Express 2014, 7, 025103.

    Article  Google Scholar 

  44. Piao, M. X.; Joo, M. K.; Na, J.; Kim, Y. J.; Mouis, M.; Ghibaudo, G.; Roth, S.; Kim, W. Y.; Jang, H. K.; Kennedy, G. P. et al. Effect of intertube junctions on the thermoelectric power of monodispersed single walled carbon nanotube networks. J. Phys. Chem. C 2014, 118, 26454–26461.

    Article  Google Scholar 

  45. Zhao, L. J.; Sun, X. J.; Lei, Z. Y.; Zhao, J. H.; Wu, J. R.; Li, Q.; Zhang, A. P. Thermoelectric behavior of aerogels based on graphene and multi-walled carbon nanotube nanocomposites. Compos. Part B 2015, 83, 317–322.

    Article  Google Scholar 

  46. Hayashi, D.; Ueda, T.; Nakai, Y.; Kyakuno, H.; Miyata, Y.; Yamamoto, T.; Saito, T.; Hata, K.; Maniwa, Y. Thermoelectric properties of single-wall carbon nanotube films: Effects of diameter and wet environment. Appl. Phys. Express 2016, 9, 025102.

    Article  Google Scholar 

  47. Miao, T. T.; Shi, S. Y.; Yan, S.; Ma, W. G.; Zhang, X.; Takahashi, K.; Ikuta, T. Integrative characterization of the thermoelectric performance of an individual multiwalled carbon nanotube. J. Appl. Phys. 2016, 120, 124302.

    Article  Google Scholar 

  48. Wu, G. B.; Gao, C. Y.; Chen, G. M.; Wang, X.; Wang, H. F. High-performance organic thermoelectric modules based on flexible films of a novel n-type single-walled carbon nanotube. J. Mater. Chem. A 2016, 4, 14187–14193.

    Article  Google Scholar 

  49. Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X. S.; Yao, Z.; Huang, R.; Broido, D. et al. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213–216.

    Article  Google Scholar 

  50. Xiao, N.; Dong, X. C.; Song, L.; Liu, D. Y.; Tay, Y.; Wu, S. X.; Li, L. J.; Zhao, Y.; Yu, T.; Zhang, H. et al. Enhanced thermopower of graphene films with oxygen plasma treatment. ACS Nano 2011, 5, 2749–2755.

    Article  Google Scholar 

  51. Sim, D.; Liu, D. Y.; Dong, X. C.; Xiao, N.; Li, S. A.; Zhao, Y.; Li, L. J.; Yan, Q. Y.; Hng, H. H. Power factor enhancement for few-layered graphene films by molecular attachments. J. Phys. Chem. C 2011, 115, 1780–1785.

    Article  Google Scholar 

  52. Wang, Z. Q.; Xie, R. G.; Bui, C. T.; Liu, D.; Ni, X. X.; Li, B. W.; Thong, J. T. L. Thermal transport in suspended and supported few-layer graphene. Nano Lett. 2011, 11, 113–118.

    Article  Google Scholar 

  53. Babichev, A. V.; Gasumyants, V. E.; Butko, V.Y. Resistivity and thermopower of graphene made by chemical vapor deposition technique. J. Appl. Phys. 2013, 113, 076101.

    Article  Google Scholar 

  54. Guo, Y.; Mu, J. K.; Hou, C. Y.; Wang, H. Z.; Zhang, Q. H.; Li, Y. G. Flexible and thermostable thermoelectric devices based on large-area and porous all-graphene films. Carbon 2016, 107, 146–153.

    Article  Google Scholar 

  55. Jang, W.; Chen, Z.; Bao, W. Z.; Lau, C. N.; Dames, C. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 2010, 10, 3909–3913.

    Article  Google Scholar 

  56. Nicklow, R.; Wakabayashi, N.; Smith, H.G. Lattice dynamics of pyrolytic graphite. Phys. Rev. B 1972, 5, 4951–4962.

    Article  Google Scholar 

  57. Berber, S.; Kwon, Y. K.; Tománek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616.

    Article  Google Scholar 

  58. Nika, D. L.; Pokatilov, E. P.; Askerov, A. S.; Balandin, A. A. Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering. Phys. Rev. B 2009, 79, 155413.

    Article  Google Scholar 

  59. Klemens, P.G. Theory of the a-plane thermal conductivity of graphite. J. Wide Bandgap Mater. 2000, 7, 332–339.

    Article  Google Scholar 

  60. Klemens, P.G. Theory of thermal conduction in thin ceramic films. Int. J. Thermophys. 2001, 22, 265–275.

    Article  Google Scholar 

  61. Cai, W. W.; Moore, A. L.; Zhu, Y. W.; Li, X. S.; Chen, S. S.; Shi, L.; Ruoff, R. S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651.

    Article  Google Scholar 

  62. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

    Article  Google Scholar 

  63. Faugeras, C.; Faugeras, B.; Orlita, M.; Potemski, M.; Nair, R. R.; Geim, A. K. Thermal conductivity of graphene in corbino membrane geometry. ACS Nano 2010, 4, 1889–1892.

    Article  Google Scholar 

  64. Fanchini, G.; Unalan, H. E.; Chhowalla, M. Modification of transparent and conducting single wall carbon nanotube thin films via bromine functionalization. Appl. Phys. Lett. 2007, 90, 092114.

    Article  Google Scholar 

  65. Jung, N.; Kim, N.; Jockusch, S.; Turro, N. J.; Kim, P.; Brus, L. Charge transfer chemical doping of few layer graphenes: Charge distribution and band gap formation. Nano Lett. 2009, 9, 4133–4137.

    Article  Google Scholar 

  66. Tongay, S.; Schumann, T.; Miao, X.; Appleton, B. R.; Hebard, A.F. Tuning Schottky diodes at the many-layer-graphene/ semiconductor interface by doping. Carbon 2011, 49, 2033–2038.

    Article  Google Scholar 

  67. Kittel, C. Introduction to Solid State Physics; Wiley: New York, 1976.

    Google Scholar 

  68. Banerjee, S.; Chakravorty, D. Electrical resistivity of coppersilica nanocomposites synthesized by electrodeposition. J. Appl. Phys. 1998, 84, 1149–1151.

    Article  Google Scholar 

  69. Mott, N. F. Conduction in Non-Crystalline Materials; OxfordUniversity Press: New York, 1993.

    Google Scholar 

  70. Rousseau, B.; Estrade-Szwarckopf, H.; Thomann, A. L.; Brault, P. Stable C-atom displacements on HOPG surface under plasma low-energy argon-ion bombardment. Appl. Phys. A 2003, 77, 591–597.

    Article  Google Scholar 

  71. Barnard, R. D. Thermoelectricity in Metals and Alloys; Wiley: New York, 1972.

    Google Scholar 

  72. Redfern, P. C.; Gruen, D.; Curtiss, L. A. Effect of boron substitution on the electronic structure of nanographene and its relevance to the thermoelectric transport properties in nanocarbon ensembles. Chem. Phys. Lett. 2009, 471, 264–268.

    Article  Google Scholar 

  73. Wu, X. S.; Hu, Y. K.; Ruan, M.; Madiomanana, N. K.; Berger, C.; de Heer, W. A. Thermoelectric effect in high mobility single layer epitaxial graphene. Appl. Phys. Lett. 2011, 99, 133102.

    Article  Google Scholar 

  74. Hewitt, C. A.; Kaiser, A. B.; Craps, M.; Czerw, R.; Roth, S.; Carroll, D. L. Temperature dependent thermoelectric properties of freestanding few layer graphene/polyvinylidene fluoride composite thin films. Synth. Met. 2013, 165, 56–59.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51576105, 51406236 51327001, 51336009, 21325417, and 51533008), National Key R&D Program of China (No. 2016YFA0200200), the Science Fund for Creative Research Groups (No. 51621062), Tsinghua University Initiative Scientific Research Program, and the National Postdoctoral Program for Innovative Talents (No. BX201700209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Zhang or Chao Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Liu, Y., Yan, S. et al. Chemically doped macroscopic graphene fibers with significantly enhanced thermoelectric properties. Nano Res. 11, 741–750 (2018). https://doi.org/10.1007/s12274-017-1683-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1683-3

Keywords

Navigation