Skip to main content
Log in

Novel porous starfish-like Co3O4@nitrogen-doped carbon as an advanced anode for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A Co-based metal-organic framework (Co-MOF) with a unique three-dimensional starfish-like nanostructure was successfully synthesized using a simple ultrasonic method. After subsequent carbonization and oxidation, a nanocomposite of nitrogen-doped carbon with a Co3O4 coating (Co3O4@N-C) with a porous starfish-like nanostructure was obtained. The final hybrid exhibited excellent lithium storage performance when evaluated as an anode material in a lithiumion battery. A remarkable and stable discharge capacity of 795 mAh·g−1 was maintained at 0.5 A·g−1 after 300 cycles. Excellent rate capability was also obtained. In addition, a full Co3O4@N-C/LiFePO4 battery displayed stable capacity retention of 95% after 100 cycles. This excellent lithium storage performance is attributed to the unique porous starfish-like structure, which effectively buffers the volume expansion that occurs during Li+ insertion/deinsertion. Meanwhile, the nitrogendoped carbon coating enhances the electrical conductivity and provides a buffer layer to accommodate the volume change and accelerate the formation of a stable solid electrolyte interface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

    Article  Google Scholar 

  2. Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.

    Article  Google Scholar 

  3. Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23, 1695–1715.

    Article  Google Scholar 

  4. Zheng, F. C.; He, M. N.; Yang, Y.; Chen, Q. W. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as highperformance anodes for lithium-ion batteries. Nanoscale 2015, 7, 3410–3417.

    Article  Google Scholar 

  5. Zhao, Y.; Feng, Z. X.; Xu, Z. J. Yolk-shell Fe2O3 ? C composites anchored on MWNTs with enhanced lithium and sodium storage. Nanoscale 2015, 7, 9520–9525.

    Article  Google Scholar 

  6. Liu, M. M.; Sun, J. In situ growth of monodisperse Fe3O4 nanoparticles on graphene as flexible paper for supercapacitor. J. Mater. Chem. A 2014, 2, 12068–12074.

    Article  Google Scholar 

  7. Wang, X. K.; Li, Z. Q.; Zhang, Z. W.; Li, Q.; Guo, E. Y.; Wang, C. X.; Yin, L. W. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries. Nanoscale 2015, 7, 3604–3613.

    Article  Google Scholar 

  8. Cong, H.-P.; Xin, S.; Yu, S.-H. Flexible nitrogen-doped graphene/SnO2 foams promise kinetically stable lithium storage. Nano Energy 2015, 13, 482–490.

    Article  Google Scholar 

  9. Zou, F.; Chen, Y. M.; Liu, K. W.; Yu, Z. T.; Liang, W. F.; Bhaway, S. M.; Gao, M.; Zhu, Y. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 2016, 10, 377–386.

    Article  Google Scholar 

  10. Zhao, Y.; Meng, Y. N.; Jiang, P. Carbon@MnO2 core–shell nanospheres for flexible high-performance supercapacitor electrode materials. J. Power Sources 2014, 259, 219–226.

    Article  Google Scholar 

  11. Zhang, P. G.; Zhang, C. Y.; Xie, A. J.; Li, C.; Song, J. M.; Shen, Y. H. Novel template-free synthesis of hollow@porous TiO2 superior anode materials for lithium ion battery. J. Mater. Sci. 2016, 51, 3448–3453.

    Article  Google Scholar 

  12. Lian, C.; Xiao, X. L.; Chen, Z.; Liu, Y. X.; Zhao, E. Y.; Wang, D. S.; Chen, C. Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res. 2016, 9, 435–441.

    Article  Google Scholar 

  13. Kim, W.-S.; Hwa, Y.; Kim, H.-C.; Choi, J.-H.; Sohn, H.-J.; Hong, S.-H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 2014, 7, 1128–1136.

    Article  Google Scholar 

  14. Ge, D. H.; Geng, H. B.; Wang, J. Q.; Zheng, J. W.; Pan, Y.; Cao, X. Q.; Gu, H. W. Porous nano-structured Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries. Nanoscale 2014, 6, 9689–9694.

    Article  Google Scholar 

  15. Yan, B.; Chen, L.; Liu, Y. J.; Zhu, G. X.; Wang, C. G.; Zhang, H.; Yang, G.; Ye, H. T.; Yuan, A. H. Co3O4 nanostructures with a high rate performance as anode materials for lithium-ion batteries, prepared via book-like cobalt-organic frameworks. CrystEngComm 2014, 16, 10227–10234.

    Article  Google Scholar 

  16. Zhan, F. M.; Geng, B. Y.; Guo, Y. J. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries. Chem.—Eur. J. 2009, 15, 6169–6174.

    Article  Google Scholar 

  17. Palacin, M. R. Recent advances in rechargeable battery materials: A chemist’s perspective. Chem. Soc. Rev. 2009, 38, 2565–2575.

    Article  Google Scholar 

  18. Chen, X.-C.; Wei, W.; Lv, W.; Su, F.-Y.; He, Y.-B.; Li, B. H.; Kang, F. Y.; Yang, Q.-H. A graphene-based nanostructure with expanded ion transport channels for high rate Li-ion batteries. Chem. Commun. 2012, 48, 5904–5906.

    Google Scholar 

  19. Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.

    Article  Google Scholar 

  20. Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. Onestep accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.

    Article  Google Scholar 

  21. Yu, Z.-L.; Xin, S.; You, Y.; Yu, L.; Lin, Y.; Xu, D.-W.; Qiao, C.; Huang, Z.-H.; Yang, N.; Yu, S.-H. et al. Ioncatalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J. Am. Chem. Soc. 2016, 138, 14915–14922.

    Article  Google Scholar 

  22. Zhou, F.; Xin, S.; Liang, H.-W.; Song, L.-T.; Yu, S.-H. Carbon nanofibers decorated with molybdenum disulfide nanosheets: Synergistic lithium storage and enhanced electrochemical performance. Angew. Chem., Int. Ed. 2014, 53, 11552–11556.

    Article  Google Scholar 

  23. Zhuo, L. H.; Wu, Y. Q.; Ming, J.; Wang, L. Y.; Yu, Y. C.; Zhang, X. B.; Zhao, F. Y. Facile synthesis of a Co3O4- carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. J. Mater. Chem. A 2013, 1, 1141–1147.

    Article  Google Scholar 

  24. Choi, B. G.; Chang, S.-J.; Lee, Y. B.; Bae, J. S.; Kim, H. J.; Huh, Y. S. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. Nanoscale 2012, 4, 5924–5930.

  25. Shan, T.-T.; Xin, S.; You, Y.; Cong, H.-P.; Yu, S.-H.; Manthiram, A. Combining nitrogen-doped graphene sheets and MoS2: A unique film–foam–film structure for enhanced lithium storage. Angew. Chem. 2016, 128, 12975–12980.

    Article  Google Scholar 

  26. Jiao, J. Q.; Qiu, W. D.; Tang, J. G.; Chen, L. P.; Jing, L. Y. Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res. 2016, 9, 1256–1266.

    Article  Google Scholar 

  27. Chen, L.-F.; Ma, S.-X.; Lu, S.; Feng, Y.; Zhang, J.; Xin, S.; Yu, S.-H. Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries. Nano Res. 2017, 10, 1–11.

    Article  Google Scholar 

  28. Guo, L. G.; Ding, Y.; Qin, C. Q.; Li, W.; Du, J.; Fu, Z. B.; Song, W. L.; Wang, F. Nitrogen-doped porous carbon spheres anchored with Co3O4 nanoparticles as high-performance anode materials for lithium-ion batteries. Electrochim. Acta 2016, 187, 234–242.

    Article  Google Scholar 

  29. Li, P. H.; Cui, M. N.; Zhang, M. B.; Guo, A. M.; Sun, Y. F.; Wang, H.-G.; Li, Y. H.; Duan, Q. Facile fabrication of Co3O4/nitrogen-doped graphene hybrid materials as high performance anode materials for lithium ion batteries. CrystEngComm 2016, 18, 3383–3388.

    Article  Google Scholar 

  30. Li, C.; Chen, T. Q.; Xu, W. J.; Lou, X. B.; Pan, L. K.; Chen, Q.; Hu, B. W. Mesoporous nanostructured Co3O4 derived from MOF template: A high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 5585–5591.

    Article  Google Scholar 

  31. Wang, Y.; Wang, B. F.; Xiao, F.; Huang, Z. G.; Wang, Y. J.; Richardson, C.; Chen, Z. X.; Jiao, L. F.; Yuan, H. T. Facile synthesis of nanocage Co3O4 for advanced lithium-ion batteries. J. Power Sources 2015, 298, 203–208.

    Article  Google Scholar 

  32. Zou, F.; Hu, X. L.; Li, Z.; Qie, L.; Hu, C. C.; Zeng, R.; Jiang, Y.; Huang, Y. H. MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 2014, 26, 6622–6628.

    Google Scholar 

  33. Zhang, G. H.; Hou, S. C.; Zhang, H.; Zeng, W.; Yan, F. L.; Li, C. C.; Duan, H. G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 2015, 27, 2400–2405.

    Article  Google Scholar 

  34. Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388–17391.

    Article  Google Scholar 

  35. Hu, L.; Yan, N.; Chen, Q. W.; Zhang, P.; Zhong, H.; Zheng, X. R.; Li, Y.; Hu, X. Y. Fabrication based on the kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage. Chem.—Eur. J. 2012, 18, 8971–8977.

    Article  Google Scholar 

  36. Wang, Z. Q.; Li, X.; Xu, H.; Yang, Y.; Cui, Y. J.; Pan, H. G.; Wang, Z. Y.; Chen, B. L.; Qian, G. D. Porous anatase TiO2 constructed from a metal–organic framework for advanced lithium-ion battery anodes. J. Mater. Chem. A 2014, 2, 12571–12575.

    Article  Google Scholar 

  37. Wu, R. B.; Qian, X. K.; Yu, F.; Liu, H.; Zhou, K.; Wei, J.; Huang, Y. Z. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J. Mater. Chem. A 2013, 1, 11126–11129.

    Google Scholar 

  38. Yin, D. M.; Huang, G.; Sun, Q. J.; Li, Q.; Wang, X. X.; Yuan, D. X.; Wang, C. L.; Wang, L. M. RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes. Electrochim. Acta 2016, 215, 410–419.

    Article  Google Scholar 

  39. Liu, W.; Yang, H. Z.; Zhao, L.; Liu, S.; Wang, H. L.; Chen, S. G. Mesoporous flower-like Co3O4/C nanosheet composites and their performance evaluation as anodes for lithium ion batteries. Electrochim. Acta 2016, 207, 293–300.

    Article  Google Scholar 

  40. Su, P. P.; Liao, S. C.; Rong, F.; Wang, F. Q.; Chen, J.; Li, C.; Yang, Q. H. Enhanced lithium storage capacity of Co3O4 hexagonal nanorings derived from Co-based metal organic frameworks. J. Mater. Chem. A 2014, 2, 17408–17414.

    Article  Google Scholar 

  41. Lu, Y. Y.; Zhan, W. W.; He, Y.; Wang, Y. T.; Kong, X. J.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 2014, 6, 4186–4195.

    Article  Google Scholar 

  42. Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S. H.; Li, C. Z.; Zuo, Y. H.; Liu, S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074–1081.

    Article  Google Scholar 

  43. Wu, Z.-S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H.-M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

    Article  Google Scholar 

  44. Yan, C. S.; Chen, G.; Sun, J. X.; Lv, C. D.; Pei, J. Edge dislocation surface modification: A new and efficient strategy for realizing outstanding lithium storage performance. Nano Energy 2015, 15, 558–566.

    Article  Google Scholar 

  45. Zheng, F. C.; Xia, G. L.; Yang, Y.; Chen, Q. W. MOFderived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale 2015, 7, 9637–9645.

  46. Su, Q. M.; Zhang, J.; Wu, Y. S.; Du, G. H. Revealing the electrochemical conversion mechanism of porous Co3O4 nanoplates in lithium ion battery by in situ transmission electron microscopy. Nano Energy 2014, 9, 264–272.

    Article  Google Scholar 

  47. Xin, S.; Chang, Z. W.; Zhang, X. B.; Guo, Y.-G. Progress of rechargeable lithium metal batteries based on conversion reactions. Natl. Sci. Rev. 2017, 4, 54–70.

    Google Scholar 

  48. Wu, F. F.; Xiong, S. L.; Qian, Y. T.; Yu, S.-H. Hydrothermal synthesis of unique hollow hexagonal prismatic pencils of Co3V2O8??nH2O: A new anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 10787–10791.

    Article  Google Scholar 

  49. Xiao, Y.; Wang, X.; Wang, W.; Zhao, D.; Cao, M. H. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode. ACS Appl. Mater. Interfaces 2014, 6, 2051–2058.

    Article  Google Scholar 

  50. Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309–1316.

    Article  Google Scholar 

  51. Li, B. J.; Cao, H. Q.; Shao, J.; Li, G. Q.; Qu, M. Z.; Yin, G. Co3O4@graphene composites as anode materials for highperformance lithium ion batteries. Inorg. Chem. 2011, 50, 1628–1632.

    Article  Google Scholar 

  52. Hao, F. B.; Zhang, Z. W.; Yin, L. W. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties. ACS Appl. Mater. Interfaces 2013, 5, 8337–8344.

    Article  Google Scholar 

  53. Yang, X. L.; Fan, K. C.; Zhu, Y. H.; Shen, J. H.; Jiang, X.; Zhao, P.; Luan, S. R.; Li, C. Z. Electric papers of graphenecoated Co3O4 fibers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 997–1002.

    Article  Google Scholar 

  54. Zhang, M. M.; Li, R.; Chang, X. X.; Xue, C.; Gou, X. L. Hybrid of porous cobalt oxide nanospheres and nitrogendoped graphene for applications in lithium-ion batteries and oxygen reduction reaction. J. Power Sources 2015, 290, 25–34.

    Article  Google Scholar 

  55. Kitada, K.; Murayama, H.; Fukuda, K.; Arai, H.; Uchimoto, Y.; Ogumi, Z.; Matsubara, E. Factors determining the packing-limitation of active materials in the composite electrode of lithium-ion batteries. J. Power Sources 2016, 301, 11–17.

    Article  Google Scholar 

  56. Wang, S. H.; Chen, M. Q.; Xie, Y. Y.; Fan, Y.; Wang, D. W.; Jiang, J. J.; Li, Y. G.; Grützmacher, H.; Su, C. Y. Nanoparticle cookies derived from metal-organic frameworks: Controlled synthesis and application in anode materials for lithium-ion batteries. Small 2016, 12, 2365–2375.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21173001 and 21371003) and Anhui Province Key Laboratory of Environment-Friendly Polymer Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhua Shen or Anjian Xie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Huang, F., Li, S. et al. Novel porous starfish-like Co3O4@nitrogen-doped carbon as an advanced anode for lithium-ion batteries. Nano Res. 10, 3457–3467 (2017). https://doi.org/10.1007/s12274-017-1557-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1557-8

Keywords

Navigation