Skip to main content
Log in

Is graphene aromatic?

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We analyze the chemical bonding in graphene using a fragmental approach, the adaptive natural density partitioning method, electron sharing indices, and nucleus-independent chemical shift indices. We prove that graphene is aromatic, but its aromaticity is different from the aromaticity in benzene, coronene, or circumcoronene. Aromaticity in graphene is local with two π-electrons delocalized over every hexagon ring. We believe that the chemical bonding picture developed for graphene will be helpful for understanding chemical bonding in defects such as point defects, single-, double-, and multiple vacancies, carbon adatoms, foreign adatoms, substitutional impurities, and new materials that are derivatives of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  CAS  Google Scholar 

  3. Unarunotai, S.; Murata, Y.; Chialvo, C. E.; Mason, N.; Petrov, I.; Nuzzo, R. G.; Moore, J. S.; Rogers, J. A. Conjugated carbon monolayer membranes: Methods for synthesis and integration. Adv. Mater. 2010, 22, 1072–1077.

    Article  CAS  Google Scholar 

  4. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

    Article  CAS  Google Scholar 

  5. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intristic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.

    Article  CAS  Google Scholar 

  6. Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491–495.

    Article  CAS  Google Scholar 

  7. Frank, I. W.; Tanenbaum, D. M.; Van der Zanda, A. M.; McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 2007, 25, 2558–2561.

    Article  CAS  Google Scholar 

  8. Scarpa, F.; Adhikari, S.; Phani, A. S. Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 2009, 20, 065709.

    Article  CAS  Google Scholar 

  9. Faccio, R.; Denis, P. A.; Pardo, H.; Goyenola, C.; Mombru, A. W. Mechanical properties of graphene nanoribbons. J. Phys. Condens. Matter 2009, 21, 285304.

    Article  Google Scholar 

  10. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

    Article  CAS  Google Scholar 

  11. Müllen, K.; Rabe, J. P. Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work. Acc. Chem. Res. 2008, 41, 511–520.

    Article  Google Scholar 

  12. Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2011, 5, 26–41.

    Article  CAS  Google Scholar 

  13. Kekulé, A. Sur la constitution des substances aromatiques. Bull. Soc. Chim. Fr. (Paris) 1865, 3, 98–110.

    Google Scholar 

  14. Kekulé, A. Note sur quelques produits de substitution de la benzene. Bull. Acad. Roy. Belg. 1866, 119, 551–563.

    Google Scholar 

  15. Kekulé, A. Untersuchungen über aromatische Verbindungen. Ann. Chem. 1866, 137, 129–136.

    Article  Google Scholar 

  16. Hückel, P. Z. Quantentheoretische Beiträge zum Benzolproblem. Z. Phys. 1931, 70, 204–286.

    Article  Google Scholar 

  17. Moran, D.; Stahl, F.; Bettinger, H. F.; Schaefer, H. F. III; Schleyer, P. V. R. Towards graphite: Magnetic properties of large polybenzenoid hydrocarbons. J. Am. Chem. Soc. 2003, 125, 6746–6752.

    Article  CAS  Google Scholar 

  18. Schleyer, P. V. R.; Maerker, C.; Dransfeld, A.; Jiao, H. J.; Hommes, N. J. R. V. E. Nucleus-independent chemical shifts: A simple and efficient aromaticity probe. J. Am. Chem. Soc. 1996, 118, 6317–6318.

    Article  CAS  Google Scholar 

  19. Galeev, T. R.; Chen, Q.; Guo, J. C.; Bai, H.; Miao, C. Q.; Lu, H. G.; Sergeeva, A. P.; Li, S. D.; Boldyrev, A. I. Deciphering the mystery of hexagon holes in an all-boron graphene α-sheet. Phys. Chem. Chem. Phys. 2011, 13, 11575–11578.

    Article  CAS  Google Scholar 

  20. Tang, H.; Ismail-Beigi, S. Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 2007, 99, 115501.

    Article  Google Scholar 

  21. Tang, H.; Ismail-Beigi, S. Self-doping in boron sheets from first principles: A route to structural design of metal boride nanostructures. Phys. Rev. B 2009, 80, 134113.

    Article  Google Scholar 

  22. Yang, X.; Ding, Y.; Ni, J. Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties. Phys. Rev. B 2008, 77, 041402.

    Article  Google Scholar 

  23. Donohue, J. The Structures of the Elements; Wiley-Interscience: New York, 1974.

    Google Scholar 

  24. Zubarev, D. Y.; Boldyrev, A. I. Developing paradigms of chemical bonding: Adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207–5217.

    Article  CAS  Google Scholar 

  25. Zubarev, D. Y.; Boldyrev, A. I. Revealing intuitively assessable chemical bonding patterns in organic aromatic molecules via adaptive natural density partitioning. J. Org. Chem. 2008, 73, 9251–9258.

    Article  CAS  Google Scholar 

  26. Zubarev, D. Y.; Boldyrev, A. I. Deciphering chemical bonding in golden cages. J. Phys. Chem. A 2009, 113, 866–868.

    Article  CAS  Google Scholar 

  27. Sergeeva, A. P.; Boldyrev, A. I. The chemical bonding of Re3Cl9 and Re3Cl9 2-revealed by the adaptive natural density partitioning analyses. Comment. Inorg. Chem. 2010, 31, 2–12.

    Article  CAS  Google Scholar 

  28. Steiner, E.; Fowler, P. W.; Jenneskens, L. W. Counter-rotating ring currents in coronene and corannulene. Angew. Chem. Int. Ed. 2001, 40, 362–366.

    Article  CAS  Google Scholar 

  29. Ciesielski, A.; Cyranski, M. K.; Krygowski, T. M.; Fowler, P. W.; Lillington, M. Super-delocalized valence isomer of coronene. J. Org. Chem. 2006, 71, 6840–6845.

    Article  CAS  Google Scholar 

  30. Balaban, A. T.; Bean, D. E.; Fowler, P. W. Patterns of ring current in coronene isomers. Acta Chim. Slov. 2010, 57, 507–512.

    CAS  Google Scholar 

  31. Poater, J.; Duran, M.; Solà, M.; Silvi, B. Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem. Rev. 2005, 105, 3911–3947.

    Article  CAS  Google Scholar 

  32. Merino, G.; Vela, A.; Heine, T. Description of electron delocalization via the analysis of molecular fields. Chem. Rev. 2005, 105, 3812–3841.

    Article  CAS  Google Scholar 

  33. Bultinck, P.; Ponec, R.; Van Damme, S. Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J. Phys. Org. Chem. 2005, 18, 706–718.

    Article  CAS  Google Scholar 

  34. Feixas, F.; Matito, E.; Solà, M.; Poater, J. Analysis of Hückel’s [4n + 2]_rule through electronic delocalization measures. J. Phys. Chem. A 2008, 112, 13231–13238.

    Article  CAS  Google Scholar 

  35. Feixas, F.; Matito, E.; Duran, M.; Poater, J.; Solà, M. Aromaticity and electronic delocalization in all-metal clusters with single, double, and triple aromatic character. Theor. Chem. Acc. 2011, 128, 419–431.

    Article  CAS  Google Scholar 

  36. Feixas, F.; Jimenez-Halla, J. O. C.; Matito, E.; Poater, J.; Solà, M. A test to evaluate the performance of aromaticity descriptors in all-metal and semimetal clusters. An appraisal of electronic and magnetic indicators of aromaticity. J. Chem. Theory Comput. 2010, 6, 1118–1130.

    Article  CAS  Google Scholar 

  37. Solà, M.; Feixas, F.; Jimenez-Halla, J. O. C.; Matito, E.; Poater, J. A critical assessment of the performance of magnetic and electronic indices of aromaticity. Symmetry 2010, 2, 1156–1179.

    Article  Google Scholar 

  38. Poater, J.; Solà, M.; Viglione, R. G.; Zanasi, R. Local aromaticity of the six-membered rings in pyracylene. A difficult case for the NICS indicator of aromaticity. J. Org. Chem. 2004, 69, 7537–7542.

    Article  CAS  Google Scholar 

  39. Matito, E.; Feixas, F.; Solà, M. Electron delocalization and aromaticity measures within the Hückel molecular orbital method. J. Mol. Struct. (Theochem) 2007, 811, 3–11.

    Article  CAS  Google Scholar 

  40. Foster, J. P.; Weinhold, F. Natural hybrid orbitals. J. Am. Chem. Soc. 1980, 102, 7211–7218.

    Article  CAS  Google Scholar 

  41. Weinhold, F.; Landis, C. R. Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press: Cambridge, UK, 2005.

    Book  Google Scholar 

  42. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  43. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  44. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627.

    Article  CAS  Google Scholar 

  45. Frisch, M. J. et al. Gaussian 03, (Revision D.01), Gaussian, Inc., Wallingford CT, 2004.

    Google Scholar 

  46. Varetto, U. Molekel 5.4.0.8, Swiss National Supercomputing Centre, Manno (Switzerland).

  47. Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. V. R. Which NICS aromaticity index for planar p rings is best? Org. Lett. 2006, 8, 863–866.

    Article  CAS  Google Scholar 

  48. Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer P. V. R. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 2005, 105, 3842–3888.

    Article  CAS  Google Scholar 

  49. Biegler-König, F. W.; Bader, R. F. W.; Tang, T. H. Calculation of the average properties of atoms in molecules. II. J. Comput. Chem. 1982, 3, 317–328.

    Article  Google Scholar 

  50. Matito, E. ESI-3D: Electron Sharing Indices Program for 3D Molecular Space Partitioning. Institute of Computational Chemistry: Girona, 2006. http: //iqc.udg.edu.es/~eduard/ESI (Updated March 3, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Konstantin V. Bozhenko or Alexander I. Boldyrev.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, I.A., Bozhenko, K.V. & Boldyrev, A.I. Is graphene aromatic?. Nano Res. 5, 117–123 (2012). https://doi.org/10.1007/s12274-011-0192-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0192-z

Keywords

Navigation