Skip to main content

Advertisement

Log in

Neuropeptide Y promotes TGF-β1 production in RAW264.7 cells by activating PI3K pathway via Y1 receptor

神经肽Y通过Y1受体激活PI3K通路促进RAW264.7细胞中TGF-β1 的产生 周江睿, 徐拯, 蒋春雷

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

To examine the effect of neuropeptide Y (NPY) on TGF-β1 production in RAW264.7 macrophages.

Methods

Enzyme linked immunosorbent assay (ELISA) was used to detect TGF-β1 production. Cell counting kit 8 (CCK-8) was used to assay the viability of RAW264.7 cells. Western blot was used to detect the phosphorylation of PI3K p85.

Results

NPY treatment could promote TGF-β1 production and rapid phosphorylation of PI3K p85 in RAW264.7 cells via Y1 receptor. The elevated TGF-β1 production induced by NPY could be abolished by wortmannin pretreatment.

Conclusion

NPY may elicit TGF-β1 production in RAW264.7 cells via Y1 receptor, and the activated PI3K pathway may account for this effect.

摘要

目的

探讨神经肽Y对巨噬细胞系RAW264.7分泌转化生长因子TGF-β1的影响。

方法

酶联免疫吸附实验检测细胞培养上清液中的TGF-β1 水平; 细胞计数试剂盒CCK-8 检测细胞活力; Western blot 检测磷脂酰肌醇3 激酶PI3K p85的磷酸化水平。

结果

神经肽Y主要通过激活其Y1受体信号通路增加RAW264.7细胞中TGF-β1的产生, 并可在10 min内快速激活PI3K通路。 PI3K通路阻滞剂可消除NPY 对TGF-β1产生的促进作用。

结论

神经肽Y能够通过Y1 受体促进RAW264.7 细胞的TGF-β1 的表达, 此作用可能由PI3K介导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tatemoto K. Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc Natl Acad Sci U S A 1982, 79: 5485–5489.

    Article  PubMed  CAS  Google Scholar 

  2. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 1999, 20: 68–100.

    Article  PubMed  CAS  Google Scholar 

  3. Renshaw D, Hinson JP. Neuropeptide Y and the adrenal gland: a review. Peptides 2001, 22: 429–438.

    Article  PubMed  CAS  Google Scholar 

  4. Kask A, Harro J, von Horsten S, Redrobe JP, Dumont Y, Quirion R. The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci Biobehav Rev 2002, 26: 259–283.

    Article  PubMed  CAS  Google Scholar 

  5. Sainsbury A, Schwarzer C, Couzens M, Fetissov S, Furtinger S, Jenkins A, et al. Important role of hypothalamic Y2 receptors in body weight regulation revealed in conditional knockout mice. Proc Natl Acad Sci U S A 2002, 99: 8938–8943.

    Article  PubMed  CAS  Google Scholar 

  6. Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D, et al. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 1998, 50: 143–150.

    PubMed  CAS  Google Scholar 

  7. Kawamura N, Tamura H, Obana S, Wenner M, Ishikawa T, Nakata A, et al. Differential effects of neuropeptides on cytokine production by mouse helper T cell subsets. Neuroimmunomodulation 1998, 5: 9–15.

    Article  PubMed  CAS  Google Scholar 

  8. Wheway J, Mackay CR, Newton RA, Sainsbury A, Boey D, Herzog H, et al. A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J Exp Med 2005, 202: 1527–1538.

    Article  PubMed  CAS  Google Scholar 

  9. Harle P, Straub RH, Wiest R, Mayer A, Scholmerich J, Atzeni F, et al. Increase of sympathetic outflow measured by neuropeptide Y and decrease of the hypothalamic-pituitary-adrenal axis tone in patients with systemic lupus erythematosus and rheumatoid arthritis: another example of uncoupling of response systems. Ann Rheum Dis 2006, 65: 51–56.

    Article  PubMed  CAS  Google Scholar 

  10. Nunes I, Shapiro RL, Rifkin DB. Characterization of latent TGF-β activation by murine peritoneal macrophages. J Immunol 1995, 155: 1450–1459.

    PubMed  CAS  Google Scholar 

  11. Wahl SM. Transforming growth factor beta (TGF-β) in inflammation: a cause and a cure. J Clin Immunol 1992, 12: 61–74.

    Article  PubMed  CAS  Google Scholar 

  12. Wahl SM, McCartney-Francis N, Allen JB, Dougherty EB, Dougherty SF. Macrophage production of TGF-β and regulation by TGF-β. Ann N Y Acad Sci 1990, 593: 188–196.

    Article  PubMed  CAS  Google Scholar 

  13. Adams DO, Hamilton TA. The cell biology of macrophage activation. Annu Rev Immunol 1984, 2: 283–318.

    Article  PubMed  CAS  Google Scholar 

  14. Assoian RK, Fleurdelys BE, Stevenson HC, Miller PJ, Madtes DK, Raines EW, et al. Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Acad Sci U S A 1987, 84: 6020–6024.

    Article  PubMed  CAS  Google Scholar 

  15. Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β secretion and the resolution of inflammation. J Clin Invest 2002, 109: 41–50.

    PubMed  CAS  Google Scholar 

  16. Otsuka M, Negishi Y, Aramaki Y. Involvement of phosphatidylinositol-3-kinase and ERK pathways in the production of TGF-β by macrophages treated with liposomes composed of phosphatidylserine. FEBS Lett 2007, 581: 325–330.

    Article  PubMed  CAS  Google Scholar 

  17. Goldberg Y, Taimor G, Piper HM, Schlüter KD. Intracellular signaling leads to the hypertrophic effect of neuropeptide Y. Am J Physiol 1998, 275: C1207–C1215.

    PubMed  CAS  Google Scholar 

  18. Tsunawaki S, Sporn M, Ding A, Nathan C. Deactivation of macrophages by transforming growth factor-β. Nature 1988, 334: 260–262.

    Article  PubMed  CAS  Google Scholar 

  19. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-β. Annu Rev Immunol 1998, 16: 137–161.

    Article  PubMed  CAS  Google Scholar 

  20. McCartney-Francis NL, Wahl SM. Transforming growth factor beta: a matter of life and death. J Leukoc Biol 1994, 55: 401–409.

    PubMed  CAS  Google Scholar 

  21. Wahl SM, Hunt DA, Wakefield LM, McCartney-Francis N, Wahl LM, Roberts AB, et al. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci U S A 1987, 84: 5788–5792.

    Article  PubMed  CAS  Google Scholar 

  22. Wiseman DM, Polverini PJ, Kamp DW, Leibovich SJ. Transforming growth factor-beta (TGFβ) is chemotactic for human monocytes and induces their expression of angiogenic activity. Biochem Biophys Res Commun 1988, 157: 793–800.

    Article  PubMed  CAS  Google Scholar 

  23. Pierce GF, Mustoe TA, Lingelbach J, Masakowski VR, Gramates P, Deuel TF. Transforming growth factor beta reverses the glucocorticoid-induced wound-healing deficit in rats: possible regulation in macrophages by platelet-derived growth factor. Proc Natl Acad Sci U S A 1989, 86: 2229–2233.

    Article  PubMed  CAS  Google Scholar 

  24. Allen JB, Manthey CL, Hand AR, Ohura K, Ellingsworth L, Wahl SM. Rapid onset synovial inflammation and hyperplasia induced by transforming growth factor beta. J Exp Med 1990, 171: 231–247.

    Article  PubMed  CAS  Google Scholar 

  25. Luger TA, Charon JA, Colot M, Micksche M, Oppenheim JJ. Chemotactic properties of partially purified human epidermal cell-derived thymocyte-activating factor (ETAF) for polymorphonuclear and mononuclear cells. J Immunol 1983, 131: 816–820.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Lei Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, JR., Xu, Z. & Jiang, CL. Neuropeptide Y promotes TGF-β1 production in RAW264.7 cells by activating PI3K pathway via Y1 receptor. Neurosci. Bull. 24, 155–159 (2008). https://doi.org/10.1007/s12264-008-0130-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-008-0130-6

Keywords

CLC number

关键词

Navigation