Skip to main content
Log in

A Novel Cell Disruption Approach: Effectiveness of Laser-induced Cell Lysis of Pichia pastoris in the Continuous System

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In biotechnological processes, often cell disruption has been an inevitable step as current host cells express most of the desired products intracellularly. Thus, an appropriate cell disruption technique must be selected considering different factors including the target product, process scale, and cell wall structure. In the current study, as a novel method, the efficacy of cell disruption via laser was tested qualitatively and quantitatively in batch and continuous systems, respectively. Laser-induced cell lysis can be a clean, rapid and convenient alternative to the other conventional disruption techniques. Our investigations in the continuous system with a flow rate of 800 μL/sec proved efficient (~ 90%) Pichia pastoris cell disruption at the wavenumber 1,064 nm with the energy input of 284 mW after four complete rounds of circulation. The main mechanism of cell disruption is assumed to be thermolysis via instant heat increase in the laser-treated spot. The results of the current study showed that continuous laser system could be applied in laboratory and industry scale for cell disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chisri, Y. and M. Moo-young (1986) Disruption of microbial cells for intracellular products. Enz. Microb. Technol. 8: 194–204.

    Article  Google Scholar 

  2. Steinberg, F. M. (1998) Biotech pharmaceuticals and biotherapy: An Overview. J. Pharm. Pharmacist. Sci. 1: 48–59.

    CAS  Google Scholar 

  3. Wu, Y. M., V. Kumaran, D. Benten, and S. Gupta (2007) Potential of bioengineering processes for therapeutic repopulation of the liver with cells. Biotechnol. Bioproc. 12: 1–8.

    Article  CAS  Google Scholar 

  4. Prudden, J. F. (1977) Method and agent for treating inflammatory disorders of the gastrointestinal tract. US Patent 4,006,224.

    Google Scholar 

  5. Laura, A., S. M. Palomares, and O. T. Ramirez (2004) Production of recombinant proteins:Challenges and solutions. Biotechnol. 267: 15–52.

    Google Scholar 

  6. Hardy, E., E. Martínez, D. Diago, R. Díaz, D. González, and L. Herrera (2000) Large-scale production of recombinant hepatitis B surface antigen from Pichia pastoris. J. Biotechnol. 77: 157–167.

    Article  CAS  Google Scholar 

  7. Middelberg, A. P. J. (1995) Process-scale disruption of microorganisms. Biotechnol. Adv. 13: 491–551.

    Article  CAS  Google Scholar 

  8. Meyer, H. P., H. J. Kuhn, S. W. Brown, and A. Fiechter (1984) Production of human leucocyte interferon by E. coli. Proceedings of 3rd European Congress on Biotechnology. September 10-14. Munich, Germany.

    Google Scholar 

  9. Aguilar-Uscanga, B. and J. M. Francois (2003) A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett. Appl. Microbiol. 37: 268–274.

    Article  CAS  Google Scholar 

  10. Bzducha-Wróbel, A., S. Błażejak, A. Kawarska, L. Stasiak-Różańska, I. Gientka, and E. Majewska (2014) Evaluation of the efficiency of different disruption methods on yeast cell wall preparation for β-glucan isolation. Molecules 19: 20941–20961.

    Article  Google Scholar 

  11. Klimek-Ochab, M., M. Brzezińska-Rodak, E. Żymańczyk-Duda, B. Lejczak, and P. Kafarski (2011) Comparative study of fungal cell disruption-scope and limitations of the methods. Folia Microbiol. 56: 469.

    Article  CAS  Google Scholar 

  12. Uhlmann, E., D. Oberschmidt, A. Spielvogel, K. Herms, M. Polte, J. Polte, and A. Dumke (2013) Development of a versatile and continuously operating cell disruption device. Procedia CIRP 5: 119–123.

    Article  Google Scholar 

  13. Liu, D., L. Ding, J. Sun, N. Boussetta, and E. Vorobiev (2016) Yeast cell disruption strategies for recovery of intracellular bioactive compounds-A review. Innovat. Food Sci. Emerg. Technol. 36: 181–192.

    Article  CAS  Google Scholar 

  14. Ho, C. W., W. S. Tan, W. B. Yap, T. C. Ling, and B. T. Tey (2008) Comparative evaluation of different cell disruption methods for the release of recombinant hepatitis B core antigen from Escherichia coli. Biotechnol. Bioproc. Eng. 13: 577–583.

    Article  CAS  Google Scholar 

  15. Stowers, C. C. and E. M. Boczko (2007) Reliable cell disruption in yeast. Yeast 24: 533–541.

    Article  CAS  Google Scholar 

  16. Balasundaram, B., S. Harrison, and D. G. Bracewell (2009) Advances in product release strategies and impact on bioprocess design. Trends Biotechnol. 27: 477–485.

    Article  CAS  Google Scholar 

  17. Yusaf, T. (2015) Evaluating the effect of heat transfer on cell disruption in ultrasound processes. Ann. Microbiol. 65: 1447–1456.

    Article  Google Scholar 

  18. Jayakar, S. S. and R. S. Singhal (2012) Development of an efficient cell disruption method for release of lipoic acid from Saccharomyces cerevisiae. Glob. J. Biotechnol. Biochem. 7: 90–99.

    CAS  Google Scholar 

  19. Liu, D., R. Savoire, E. Vorobiev, and J. L. Lanoisellé (2010) Effect of disruption methods on the dead-end microfiltration behavior of yeast suspension. Separat. Sci. Technol. 45: 1042–1050.

    Article  CAS  Google Scholar 

  20. Spiden, E. M., P. J. Scales, S. E. Kentish, and G. J. Martin (2013) Critical analysis of quantitative indicators of cell disruption applied to Saccharomyces cerevisiae processed with an industrial high pressure homogenizer. Biochem. Eng. J. 70: 120–126.

    Article  CAS  Google Scholar 

  21. Tam, Y. J., Z. N. Allaudin, M. A. M. Lila, A. R. Bahaman, J. S. Tan, and M. A. Rezaei (2012) Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology. BMC Biotechnol. 12: 70.

    Article  CAS  Google Scholar 

  22. Paez, R., A. Agraz, and A. Herrerla (1993) The recovery of the hepatitis B virus surface Antigen (HBsAg) from a recombinant P. pastoris strain disruption and precipitation studies. Acta Biotechnol. 13: 117–122.

    Article  CAS  Google Scholar 

  23. Henriksen, G. and S. Assmann (1997) Laser-assisted patch clamping: A methodology Pfluegers. Archiv Eur. J. Physiol. 6: 832–841.

    Article  Google Scholar 

  24. Henriksen, G., A. Taylor, C. Brownlee, and S. Assmann (1996) Laser microsurgery of higher plant cell walls permits patch clamp-clamp access. Plant Physiol. 4: 1063–1068.

    Article  Google Scholar 

  25. Dhawan, M. D., F. Wise, and A. J. Baeumner (2002) Development of a laser-induced cell lysis system. Anal. Bioanal. Chem.: 421–426.

    Google Scholar 

  26. McMillan, J. R., I. A. Watson, M. Ali, and W. Jaafar (2013) Evaluation and comparison of algal cell disruption methods: Microwave, water bath, blender, ultrasonic and laser treatment. Appl. Energy 103: 128–134.

    Article  Google Scholar 

  27. Korean Society for Biotechnology and Bioengineering, Submission of manuscript. http://bbe.or.kr.

  28. Han, K. (1992) A Study of Acetic Acid Formation in Escherichia coli Fermentation. Ph.D. Thesis. University of California, Irvine, CA, USA.

    Google Scholar 

  29. Sambrook, J., E. Fritsch, and T. Maniatis (1989) Molecular Cloning: A Laboratory Manual. 2nd ed., pp. 23–38. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  30. Hamer, G. (1985) Chemical engineering and biotechnology. pp. 356-368. In: I. J. Higgins, D. J. Best, and J. Jones (eds.). Biotechnology: Principles and Applications. Blackwell Scientific, Oxford, UK.

  31. Bradford, M. M. (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  32. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  33. Kuanglin, C., D. Sagar, Q. Jianwei, S. K. Moon, and P. Yankun (2015) Depth of penetration of a 785 nm wavelength laser in food powders. Proceedings SPIE 9488, Sensing for Agriculture and Food Quality and Safety VII, 94880U, doi:10.1117/12.2177000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Nezamedin Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gazor, M., Talesh, S.S.A., kavianpour, A. et al. A Novel Cell Disruption Approach: Effectiveness of Laser-induced Cell Lysis of Pichia pastoris in the Continuous System. Biotechnol Bioproc E 23, 49–54 (2018). https://doi.org/10.1007/s12257-017-0261-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0261-6

Keywords

Navigation