Skip to main content
Log in

Potential of bioengineering processes for therapeutic repopulation of the liver with cells

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Multiple unique aspects of liver biology make this organ an excellent paradigm for novel cell and gene therapy applications. In recent years, insights were obtained into how transplanted cells engraft and proliferate in the liver, including in the context of pre-existing disease. Also, a variety of animal models were studied to establish the basis of cell and gene therapy applications in specific disorders. Through ongoing research activity, additional mechanisms in liver repopulation have been uncovered, where manipulation of specific cell compartments and cellular processes,e.g., those aimed at extracellular matrix component receptors or soluble signals in transplanted and native cells can be exploited for enhancing cell engraftment and proliferation. Such studies demonstrate the possibility of applying biotechnology and/or bioengineering principles to organ replacement aimed at cell and gene therapy. Joining of these disciplines with research in stem cell biology, particularly in efforts concerning targeting of transplanted stem cells to given organs with achievement of lineage-specific cell differentiation and function, will be particularly important for future cell and gene therapy applications. This review offers an overview of relevant mechanisms in liver repopulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta, S. and V. Kumaran (2004) Hepatocytes. pp. 346–350. In: L. J. Johnson (ed.)Encyclopedia of Gastroenterology. Elsevier Inc., San Diego, CA, USA.

    Google Scholar 

  2. Gupta, S. (2005) The therapeutic potential of liver repopulation for metabolic or endocrine disorders. pp. 165–181. In: L. B. Lester (ed.)Stem Cells in Endocrinology. The Humana Press Inc., NJ, USA.

    Google Scholar 

  3. Horslen, S. P. and I. J. Fox (2004) Hepatocyte transplantation.Transplantation 77: 1481–1486.

    Article  Google Scholar 

  4. Millis, J. M. and J. E. Losanoff (2005) Technology insight: liver support systems.Nat. Clin. Pract. Gastroenterol. Hepatol. 2: 398–405.

    Article  CAS  Google Scholar 

  5. Laleman, W., A. Wilmer, P. Evenepoel, C. Verslype, J. Fevery, and F. Nevens (2006) Review article: non-biological liver support in liver failure.Aliment. Pharmaol. Ther. 23: 351–363.

    Article  CAS  Google Scholar 

  6. Gupta, S., R. P. Vemuru, C. D. Lee, P. R. Yerneni, E. Aragona, and R. D. Burk (1994) Hepatocytes exhibit superior transgene expression after transplantation into liver and spleen compared with peritoneal cavity or dorsal fat pad: Implications for hepatic gene therapy.Hum. Gene Ther. 5: 959–967.

    Article  CAS  Google Scholar 

  7. Sokhi, R. P., P. Rajvanshi, and S. Gupta (2000) Transplanted reporter cells help in defining onset of hepatocyte proliferation during the life of F344 rats.Am. J. Physiol. Gastrointest. Liver Physiol. 279: G631-G640.

    CAS  Google Scholar 

  8. Gupta, S., H. Malhi, and G. R. Gorla (2000) Re-engineering the liver with natural biomaterials.Yonsei Med. J. 41: 814–824.

    CAS  Google Scholar 

  9. Ohashi, K., J. M. Waugh, M. D. Dake, T. Yokoyama, H. Kuge, Y. Nakajima, M. Yamanouchi, H. Naka, A. Yoshioka, and M. A. Kay (2005) Liver tissue engineering at extrahepatic sites in mice as a potential new therapy for genetic liver diseases.Hepatology 41: 132–140.

    Article  Google Scholar 

  10. Demetriou, A. A., A. Reisner, J. Sanchez, S. M. Levenson, A. D. Moscioni, and J. R. Chowdhury (1988) Transplantation of microcarrier-attached hepatocytes into 90% partially hepatotectomized rats.Hepatology 8: 1006–1009.

    Article  CAS  Google Scholar 

  11. Kobayashi, N., T. Fujiwara, K. A. Westerman, Y. Inoue, M. Sakaguchi, H. Noguchi, M. Miyazaki, J. Cai, N. Tanaka, I. J. Fox, and P. Leboulch (2000) Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes.Science 287: 1258–1262.

    Article  CAS  Google Scholar 

  12. Demetriou, A. A., S. M. Levenson, P. M. Novikoff, A. B. Novikoff, N. R. Chowdhury, J. Whiting, A. Reisner, and J. R. Chowdhury (1986) Survival, organization, and function of microcarrier-attached hepatocytes transplanted in rats.Proc. Natl. Acad. Sci. USA 83: 7475–7479.

    Article  CAS  Google Scholar 

  13. Demetriou, A. A., J. F. Whiting, D. Feldman, S. M. Levenson, N. R. Chowdhury, A. D. Moscioni, M. Kram, and J. R. Chowdhury (1986) Replacement of liver function in rats by transplantation of microcarrier-attached hepatocytes.Science 233: 1190–1192.

    Article  CAS  Google Scholar 

  14. Habibullah, C. M., I. H. Syed, A. Qamar, and Z. Taher-Uz (1994) Human fetal hepatocyte transplantation in patients with fulminant hepatic failure.Transplantation 58: 951–952.

    Article  CAS  Google Scholar 

  15. Joseph, B., E. Berishvili, D. Benten, V. Kumaran E. Liponava, K. Bhargava, C. Palestro, Z. Kakabadze, and S. Gupta (2004) Isolated small intestinal segments support auxiliary livers with maintenance of hepatic functions.Nat. Med. 10: 749–753.

    Article  CAS  Google Scholar 

  16. Gupta, S., M. Inada, B. Joseph, V. Kumaran, and D. Benten (2004) Emerging insights into liver-directed cell therapy for genetic and acquired disorders.Transpl. Immunol. 12: 289–302.

    Article  CAS  Google Scholar 

  17. Gupta, S., S. R. G. Vasa, P. Rajvanshi, L. S. Zuckier, C. J. Palestro, and K. K. Bhargava (1997) Analysis of hepatocytes distribution and survival in vascular beds with cells marked by 99m-TC or endogenous dipeptidyl peptidase IV activity.Cell Transplant. 6: 377–386.

    Article  CAS  Google Scholar 

  18. Gupta, S., P. Rajvanshi, R. Sokhi, S. Slehria, A. Yam, A. Kerr, and P. M. Novikoff (1999) Entry and integration of transplanted hepatocytes in rat liver plates occur by disruption of hepatic sinusoidal endothelium.Hepatology 29: 509–519.

    Article  CAS  Google Scholar 

  19. Slehria, S., P. Rajvanshi, Y. Ito, R. P. Sokhi, K. K. Bhargava, C. J. Palestro, R. S. McCuskey, and S. Gupta (2002) Hepatic sinusoidal vasodilators improve transplanted cell engraftment and ameliorate microcirculatory perturbations in the liver.Hepatology 35: 1320–1328.

    Article  CAS  Google Scholar 

  20. Koenig, S., C. Stoesser, P. Krause, H. Becker, and P. M. Markus (2005) Liver repopulation after hepatocellular transplantation: integration and interaction of transplanted hepatocytes in the host.Cell Transplant. 14: 31–40.

    Article  Google Scholar 

  21. Joseph, B., H. Malhi, K. K. Bhargava, C. J. Palestro, R. S. McCuskey, and S. Gupta (2002) Kupffer cells participate in early clearance of syngeneic hepatocytes transplanted in the rat liver.Gastroenterology 123: 1677–1685.

    Article  Google Scholar 

  22. Malhi, H., P. Annamaneni, S. Slehria, B. Joseph, K. K. Bhargava, C. J. Palestro, P. M. Novikoff, and S. Gupta (2002) Cyclophosphamide disrupts hepatic sinusoidal endothelium and improves transplanted cell engraftment in rat liver.Hepatology 36: 112–121.

    Article  CAS  Google Scholar 

  23. Kim, K. S., B. Joseph, M. Inada, and S. Gupta (2005) Regulation of hepatocyte engraftment and proliferation after cytotoxic drug-induced perturbation of the rat liver.Transplantation 80: 653–659.

    Article  CAS  Google Scholar 

  24. Gupta, S., P. Rajvanshi, and C. D. Lee (1995) Integration of transplanted hepatocytes into host liver plates demonstrated with dipeptidyl peptidase IV-deficient rats.Proc. Natl. Acad. Sci. USA 92: 5860–5864.

    Article  CAS  Google Scholar 

  25. Gupta, S., P. Rajvanshi, H. Malhi, S. Slehria, R. P. Sokhi, S. R. Vasa, M. Dabeva, D. A. Shafritz, and A. Kerr (2000) Cell transplantation causes loss of gap junctions and activates GGT expression permanently in host liver.Am. J. Physiol. Gastrointest. Liver Physiol. 279: G815-G826.

    CAS  Google Scholar 

  26. Benten, D., V. Kumaran, B. Joseph, J. Schattenberg, Y. Popov, D. Schuppan, and S. Gupta (2005) Hepatocyte transplantation activates hepatic stellate cells with beneficial modulation of cell engraftment in the rat.Hepatology 42: 1072–1081.

    Article  CAS  Google Scholar 

  27. Kumaran, V., B. Joseph, D. Benten, and S. Gupta (2005) Integrin and extracellular matrix interactions regulate engraftment of transplanted hepatocytes in the rat liver.Gastroenterology 129: 1643–1653.

    Article  CAS  Google Scholar 

  28. Kumaran, V., D. Benten, A. Follenzi, B. Joseph, R. Sarkar, and S. Gupta (2005) Transplantation on endothelial cells corrects the phenotype in hemophilia A mice.J. Thromb. Haemost. 3: 2022–2031.

    Article  CAS  Google Scholar 

  29. Zhou, W., M. Inada, T. P. Lee, D. Benten, S. Lyubsky, E. E. Bouhassira, S. Gupta, and H. M. Tsai (2005) ADAMTS13 is expressed in hepatic stellate cells.Lab. Invest. 85: 780–788.

    Article  CAS  Google Scholar 

  30. Benten, D., A. Follenzi, K. K. Bhargava, V. Kumaran, C. J. Palestro, and S. Gupta (2005) Hepatic targeting of transplanted liver sinusoidal endothelial cells in intact mice.Hepatology 42: 140–148.

    Article  CAS  Google Scholar 

  31. Fausto, N. (2004) Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells.Hepatology 39: 1477–1487.

    Article  Google Scholar 

  32. Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones (1998) Embryonic stem cell lines derived from human blastocysts.Science 282: 1145–1147.

    Article  CAS  Google Scholar 

  33. Shamblott, M. J., J. Axelman, J. W. Littlefield, P. D. Blumenthal, G. R. Huggins, Y. Cui, L. Cheng, and J. D. Gearhart (2001) Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensivelyin vitro.Proc. Natl. Acad. Sci. USA 98: 113–118.

    Article  CAS  Google Scholar 

  34. Malhi, H., A. N. Irani, S. Gagandeep, and S. Gupta (2002) Isolation of human progenitor liver epithelial cells with extensive replication capacity and differentiation into mature hepatocytes.J. Cell Sci. 115: 2679–2688.

    CAS  Google Scholar 

  35. Lazaro, C. A., E. J. Croager, C. Mitchell, J. S. Campbell, C. Yu, J. Foraker, J. A. Rhim, G. C. Yeoh, and N. Fausto (2003) Establishment, characterization, and longterm maintenance of cultures of human fetal hepatocytes.Hepatology 38: 1095–1106.

    Article  Google Scholar 

  36. Dabeva, M. D., P. M. Petkov, J. Sandhu, R. Oren, E. Laconi, E. Hurston, and D. A. Shafritz (2000) Proliferation and differentiation of fetal liver epithelial progenitor cells after transplantation into adult rat liver.Am. J. Pathol. 156: 2017–2031.

    CAS  Google Scholar 

  37. Sierra, E., P. Maganto, J. Codesal, N. Mula, J. Cubero, E. Arza, J. L. Castillo-Olivares, and R. M. Arahuctes (2000) Liver gene expression and increase in albumin synthesis by fetal hepatocytes transplanted into analbuminemic rats.Life Sci. 67: 2417–2432.

    Article  CAS  Google Scholar 

  38. Sandhu, J. S., P. M. Petkov, M. D. Dabeva, and D. A. Shafritz (2001) Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells.Am. J. Pathol. 159: 1323–1334.

    CAS  Google Scholar 

  39. Cantz, T., D. M. Zuckerman, M. R. Burda, M. Dandri, B. Goricke, S. Thalhammer, W. M. Heckl, M. P. Manns, J. Petersen, and M. Ott (2003) Quantitative gene expression analysis reveals transition of fetal liver progenitor cells to mature hepatocytes after transplantation in uPA/RAG-2 mice.Am. J. Pathol. 162: 37–45.

    CAS  Google Scholar 

  40. Khan, A. A., A. Habeeb, N. Parveen, B. Naseem, R. P. Babu, A. K. Capoor, and C. M. Habibullah (2004) Peritoneal transplantation of human fetal hepatocytes for the treatment of acute fatty liver of pregnancy: a case report.Trop. Gastroenterol. 25: 141–143.

    CAS  Google Scholar 

  41. Saxena, R. and N. Theise (2004) Canals of Hering: recent insights and current knowledge.Semin. Liver Dis. 24: 43–48.

    Article  Google Scholar 

  42. Muller-Borer, B. J., W. E. Cascio, P. A. Anderson, J. N. Snowwaert, J. R. Frye, N. Desai, G. L. Esch, J. A. Brackham, C. R. Bagnell, W. B. Coleman, J. W. Grisham, and N. N. Malouf (2004) Adult-derived liver stem cells acquire a cardiomyocyte structural and functional phenotypeex vivo.Am. J. Pathol. 165: 135–145.

    Google Scholar 

  43. Yasui, O., N. Miura, K. Terada, Y. Kawarada, K. Koyama, and T. Sugiyama (1997) Isolation of oval cells from Long-Evans Cinnamon rats and their transformation into hepatocytesin vivo in the rat liver.Hepatology 25: 329–334.

    CAS  Google Scholar 

  44. Wang, X., M. Foster, M. Al-Dhalimy, E. Lagasse, M. Finegold, and M. Grompe (2003) The origin and liver repopulating capacity of murine oval cells.Proc. Natl. Acad. Sci. USA 100 Suppl 1: 11881–11888.

    Article  CAS  Google Scholar 

  45. Terada, S., K. Matsuura, S. Enosawa, M. Miki, A. Hoshika, S. Suzuki, and N. Sakuragawa (2000) Inducing proliferation of human amniotic epithelial (HAE) cells for cell therapy.Cell Transplant. 9: 701–704.

    CAS  Google Scholar 

  46. Takashima, S., H. Ise, P. Zhao, T. Akaike, and T. Nikaido (2004) Human amniotic epithelial cells possess hepatocyte-like characteristics and functions.Cell Struct. Funct. 29: 73–84.

    Article  CAS  Google Scholar 

  47. Yen, B. L., H. I. Huang, C. C. Chien, H. Y. Jui, B. S. Ko, M. Yao, C. T. Shun, M. L. Yen, M. C. Lee, and Y. C. Chen (2005) Isolation of multipotent cells from human term placenta.Stem Cells 23: 3–9.

    Article  CAS  Google Scholar 

  48. Gordon, G. J., W. B. Coleman, and J. W. Grisham (2000) Temporal analysis of hepatocyte differentiation by small hepatocyte-like progenitor cells during liver regeneration in retrorsine-exposed rats.Am. J. Pathol. 157: 771–786.

    CAS  Google Scholar 

  49. Gordon, G. J., G. M. Butz, J. W. Grisham, and W. B. Coleman (2002) Isolation, short-term culture, and transplantation of small hepatocyte-like progenitor cells from retrorsine-exposed rats.Transplantation 73: 1236–1243.

    Article  Google Scholar 

  50. Wu, Y. M., B. Joseph, and S. Gupta (2006) Immuno-suppression using the mTOR inhibition mechanism affects replacement of rat liver with transplanted cells.Hepatology 44: 410–419.

    Article  CAS  Google Scholar 

  51. Bumgardner, G. L. and C. G. Orosz (2000) Unusual patterns of alloimmunity evoked by allogeneic liver parenchymal cells.Immunol. Rev. 174: 260–279.

    Article  CAS  Google Scholar 

  52. Rajvanshi, P., A. Kerr, K. K. Bhargava, R. D. Burk, and S. Gupta (1996) Studies of liver repopulation using the dipeptidyl peptidase IV-deficient rat and other rodent recipients: Cell size and structure relationships regulate capacity for increased transplanted hepatocyte mass in the liver lobule.Hepatology 23: 482–496.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, YM., Kumaran, V., Benten, D. et al. Potential of bioengineering processes for therapeutic repopulation of the liver with cells. Biotechnol. Bioprocess Eng. 12, 1–8 (2007). https://doi.org/10.1007/BF02931796

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931796

Keywords

Navigation