Skip to main content

Advertisement

Log in

Guest speakers lectures, oral presentations, clinical case presentations

  • Focus
  • Published:
ArgoSpine News & Journal

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ishihara H, Kanamori M, Kawaguchi Y et al. (2004) Adjacent segment disease after anterior cervical interbody fusion. Spine J 4: 624–628

    Article  PubMed  Google Scholar 

  2. Dmitriev AE, Cunningham BW, Hu N et al. (2005) Adjacent level intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty: an in vitro human cadaveric model. Spine 30: 1165–1172

    Article  PubMed  Google Scholar 

  3. Barrey C, Campana S, Persohn S et al. (2012) Cervical disc prosthesis versus arthrodesis using one-level, hybrid and two-level constructs: an in vitro investigation. Eur Spine J 21(3): 432–442

    Article  PubMed  Google Scholar 

  4. Galbusera F, Bellini CM, Brayda-Bruno M, Fornari M (2008) Biomechanical studies on cervical total disc arthroplasty: a literature review. Clin Biomech 23: 1095–1104

    Article  Google Scholar 

  5. Sasso RC, Best NM (2008) Cervical kinematics after fusion and Bryan disc arthroplasty. J Spinal Disord Tech 21: 19–22

    Article  PubMed  Google Scholar 

  6. Rousseau MA, Cottin P, Levante S et al. (2008) In Vivo kinematics of two types of ball-and-socket cervical disc replacements in the sagittal plane. Cranial versus caudal geometric center. Spine 33:E6–E9

    Google Scholar 

  7. Johnson JP, Lauryssen C, Cambron HO et al. (2004) Sagittal alignment and the Bryan cervical artificial disc. Neurosurg Focus 17: E4

    Article  Google Scholar 

  8. Snyder JT, Tzermiadianos MN, Ghanayem AJ, et al. (2007) Effect of uncovertebral joint excision on the motion response of the cervical spine after total disc replacement. Spine 32: 2965–2969

    Article  PubMed  Google Scholar 

  9. Barrey C, Champain S, Campana S, et al. (2012) Sagittal alignment and kinematics at instrumented and adjacent levels after total disc replacement in the cervical spine. Eur Spine J 21(8):1648–1659

    Article  PubMed  Google Scholar 

References

  1. Auerbach JD, Jones KJ, Fras CI et al. (2008) The prevalence of indications and contraindications to cervical total disc replacement. Spine J 8: 711–716

    Article  PubMed  Google Scholar 

  2. Bertagnoli R, Yue JJ, Pfeiffer F et al. (2005) Early results after ProDisc-C cervical disc replacement. J Neurosurg. Spine 2: 403–410

    Article  PubMed  Google Scholar 

  3. Chang UK, Kim DH, Lee MC et al. (2007) Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion. J Neurosurg Spine 7: 33–39

    Article  PubMed  Google Scholar 

  4. Cunningham BW, Hu N, Zorn CM et al. (2010) Comparative fixation methods of cervical disc arthroplasty versus conventional methods of anterior cervical arthrodesis: serration, teeth, keels, or screws? J Neurosurg Spine 12: 214–220

    Article  PubMed  Google Scholar 

  5. Goffin J, Van LJ, Van CF et al. (1995) Long-term results after anterior cervical fusion and osteosynthetic stabilization for fractures and/or dislocations of the cervical spine. J Spinal Disord 8: 500–508

    Article  PubMed  CAS  Google Scholar 

  6. Hilibrand AS, Carlson GD, Palumbo MA et al. (1999) Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 81: 519–528

    PubMed  CAS  Google Scholar 

  7. Leung C, Casey A, Goffin J et al. (2005) Clinical significance of heterotopic ossification in cervical disc replacement: a prospective multicenter clinical trial. Neurosurgery 57: 759–763

    Article  PubMed  Google Scholar 

  8. Matgé G (2002) Cervical cage fusion with 5 different implants: 250 cases. Acta Neurochir 144: 539–550

    Article  PubMed  Google Scholar 

  9. Robertson JT, Papadopoulos SM, Traynelis VC (2005) Assessment of adjacent-segment disease in patients treated with cervical fusion or arthroplasty: a prospective 2-year study. J Neurosurg Spine 3: 417–423

    Article  PubMed  Google Scholar 

  10. Wigfield C, Gill S, Nelson R, et al. (2002) Influence of an artificial cervical joint compared with fusion on adjacent-level motion in the treatment of degenerative cervical disc disease. J Neurosurg Spine 96: 17–21

    Article  Google Scholar 

References

  1. Schaeren S, Broger I, Jeanneret B (2008) Minimum four-year follow-up of spinal stenosis with degenerative spondylolisthesis treated with decompression and dynamic stabilization. Spine 33: E636–E642

    Article  PubMed  Google Scholar 

  2. Di Silvestre M, Lolli F, Bakaloudis G, Parisini P (2010) Dynamic stabilization for degenerative lumbar scoliosis in elderly patients. Spine 35: 277–234

    Article  Google Scholar 

  3. Welch WC, Cheng BC, Awad TE et al. (2007) Clinical outcomes of the Dynesis dynamic neutralization system: 1-year preliminary results. Neurosurg focus 22: E8

    Article  PubMed  Google Scholar 

  4. Sapkas GS, Themistocleous GS, Mavrogenis AF et al. (2007) Stabilization of the lumbar spine using the dynamic neutralization system. Orthopedics 30: 859–865

    PubMed  Google Scholar 

  5. Fay LY, Wu JC, Tsai TY et al. (2012) Dynamic stabilization for degenerative spondylolisthesis: Evaluation of radiographic and clinical outcomes. Clin Neurol Neurosurg 21 [Epub ahead of print]

  6. Stoll TM, Dubois G, Schwarzenbach O (2002) The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 11: S170–S178

    PubMed  Google Scholar 

  7. Charlson ME, Pompei P, Ales KL et al. (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Cron Dis 40: 373–383

    Article  CAS  Google Scholar 

  8. Raffo CS, Lauerman WC (2006) Predicting morbidity and mortality of lumbar spine arthrodesis in patients in their ninth decade. Spine 31: 99–103

    Article  PubMed  Google Scholar 

  9. Carreon LY, Puno RM, Dimar JR et al. (2003) Perioperative complications of posterior lumbar decompression and arthrodesis in older adults. J Bone Joint Surg Am. 85-A: 2089–2092

    PubMed  Google Scholar 

References

  1. Schmoelz W, Huber JF, Nydegger T et al. (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech. 16: 418–423

    Article  PubMed  CAS  Google Scholar 

  2. Schwarzenbach O, Berlemann U, Stoll TM et al. (2005) Posterior dynamic stabilization systems: DYNESYS. Orthop Clin North Am 36: 363–372

    Article  PubMed  Google Scholar 

  3. Cakir B, Carazzo C, Schmidt R et al. (2009) Adjacent segment mobility after rigid and semirigid instrumentation of the lumbar spine. Spine 34: 1287–1291

    Article  PubMed  Google Scholar 

  4. Legaye J (2005) Unfavorable influence of the dynamic neutralization system on sagittal balance of the spine. Rev Chir Orthop Reparatrice Appar Mot 91: 542–550

    Article  PubMed  CAS  Google Scholar 

  5. Min JH, Jang JS, Jung B et al. (2008) The clinical characteristics and risk factors for the adjacent segment degeneration in instrumented lumbar fusion. J Spinal Disord Tech 21: 305–309

    Article  PubMed  Google Scholar 

  6. Kumar A, Beastall J, Hughes J et al. (2008) Disc changes in the bridged and adjacent segments after Dynesys dynamic stabilization system after two years. Spine. 33: 2909–2914

    Article  PubMed  Google Scholar 

  7. Schaeren S, Broger I, Jeanneret B (2008) Minimum four-year follow-up of spinal stenosis with degenerative spondylolisthesis treated with decompression and dynamic stabilization. Spine 33: E636–E642

    Article  PubMed  Google Scholar 

  8. Umehara S, Zindrick MR, Patwardhan AG et al. (2000) The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine 25: 1617–1624

    Article  PubMed  CAS  Google Scholar 

  9. Oda I, Cunningham BW, Buckley RA et al. (1999) Does spinal kyphotic deformity influence the biomechanical characteristics of the adjacent motion segments? An in vivo animal model. Spine 24: 2139–2146

    Article  PubMed  CAS  Google Scholar 

  10. Kumar MN, Baklanov A, Chopin D (2001) Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J. 10: 314–319

    Article  PubMed  CAS  Google Scholar 

References

  1. Shono Y, Kaneda K, Abumi K et al. (1998) Stability of posterior spinal instrumentation and its effects on adjacent motion segments in the lumbosacral spine. Spine 23: 1550–1558

    Article  PubMed  CAS  Google Scholar 

  2. Freudiger S, Dubois G, Lorrain M (1999) Dynamic neutralization of the lumbar spine confirmed on a new lumbar spine simulator in vitro. Arch Orthop Trauma Surg 119: 127–122

    Article  PubMed  CAS  Google Scholar 

  3. Cakir B, Carrazo C, Schmidt R et al. (2009) Adjacent segment mobility after rigid and semirigid instrumentation in the lumbar spine. Spine 34: 1287–1291

    Article  PubMed  Google Scholar 

  4. Putzier M, Schneider SV, Funk JF et al. (2005) The surgical treatment of the lumbar disc prolapse: Nucleotomy with additional transpedicular dynamic stabilization versus nucleotomy alone. Spine 30: E109–E114

    Article  PubMed  Google Scholar 

  5. Schnake KJ, Schaeren S, Jeanneret B (2006) Dynamic Stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis. Spine 31: 442–449

    Article  PubMed  Google Scholar 

  6. Welch WC, Cheng BC, Awad TE (2007) Clinical outcomes of the Dynesys dynamic neutralization system: 1-year preliminary results. Neurosurg Focus 22: E8–16

    Article  PubMed  Google Scholar 

  7. Grob D, Benini A, Junge A, Mannion AF (2005) Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine 30: 324–331

    Article  PubMed  Google Scholar 

  8. Schaeren S, Broger I, Janneret B (2008) Minimal four-year follow-up of spinal stenosis with degenerative spondylolisthesis treated with decompression and dynamic stabilization. Spine 33: E636–E642

    Article  PubMed  Google Scholar 

  9. Kumar A, Beastall J, Hughes J et al. (2008) Disk changes in the bridged and adjacent segments after Dynesys dynamic stabilization system after two years. Spine 33: 2909–2914

    Article  PubMed  Google Scholar 

  10. Chou G, Lau D, Skelly A, Ecker E (2011) Dynamic stabilization versus fusion for treatment of degenerative spine conditions. Evidence-Based Spine-Care J 2: 33–42

    Article  Google Scholar 

References

  1. Grammatico-Guillon L, Baron S, Gettner S et al. (2012) Bone and joint infections in hospitalized patients in France, 2008: clinical and economic outcomes. J Hosp Infect 82(1): 40–48

    Article  PubMed  CAS  Google Scholar 

  2. Lew DP, Waldvogel FA (2004) Osteomyelitis. Lancet 364(9431): 369–379

    Article  PubMed  CAS  Google Scholar 

  3. Singh JA. (2011) Smoking and outcomes after knee and hip arthroplasty: a systematic review. J Rheumatol 38(9): 1824–1834

    Article  PubMed  Google Scholar 

  4. Lübbeke A, Stern R, Garavaglia G et al. (2007) Differences in outcomes of obese women and men undergoing primary total hip arthroplasty. Arthritis Rheum 15; 57(2): 327–334

    Article  Google Scholar 

  5. Bode LG, Kluytmans JA, Wertheim HF et al. (2010) Preventing surgical-site infections in nasal carriers of Staphylococcus aureus. N Engl J Med 7; 362(1): 9–17

    Article  CAS  Google Scholar 

  6. Yamada K, Matsumoto K, Tokimura F et al. (2011) Are bone and serum cefazolin concentrations adequate for antimicrobial prophylaxis? Clin Orthop Relat Res 469(12): 3486–3894. Epub 2011 Oct 4

    Article  PubMed  Google Scholar 

  7. Liu C, Abdul-Jabbar A, Takemoto S et al. Microbiology of Postoperative Spine Infections: A Retrospective Study of 239 Cases. Poster presentation K-261. 852th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco 2012

    Google Scholar 

References

  1. Lew DP, Waldvogel FA (2004) Osteomyelitis. Lancet 364(9431): 369–379

    Article  PubMed  CAS  Google Scholar 

  2. Zimmerli W (2010) Clinical practice. Vertebral osteomyelitis. N Engl J Med 362(11): 1022–1029

    Article  PubMed  CAS  Google Scholar 

  3. Dubée V, Lenoir T, Leflon-Guibout V et al. (2012) Three-Month Antibiotic Therapy for Early-Onset Postoperative Spinal Implant Infections. Clin Infect Dis 55(11): 1481–1487

    Article  PubMed  Google Scholar 

  4. Kowalski TJ, Berbari EF, Huddleston PM et al. (2007) The management and outcome of spinal implant infections: contemporary retrospective cohort study. Clin Infect Dis 44(7): 913–920

    Article  PubMed  Google Scholar 

  5. McHenry MC, Easley KA, Locker GA (2002) Vertebral osteomyelitis: long-term outcome for 253 patients from 7 Cleveland-area hospitals. Clin Infect Dis. 34(10): 1342–1350. Epub 2002 Apr 22

    Article  PubMed  Google Scholar 

  6. de Winter F, Van de Wiele C, Vandenberghe S et al. (2001) Coincidence camera FDG imaging for the diagnosis of chronic orthopedic infections: a feasibility study. J Comput Assist Tomogr 25(2): 184–189

    Article  PubMed  Google Scholar 

  7. Valour F, Baudry T, Sénéchal A et al. F-18 FDG PET/CT during the follow-up of patients with complicated hematogenous vertebral osteomyelitis. SpineWeek 2012, Amsterdam

    Google Scholar 

  8. Baudry T, Valour F, Morelec I et al. Prediction of residual disease using F18 FDG PET/CT In patients with staphylococcal implant-associated spine infection requiring long-term suppressive therapy. SpineWeek 2012, Amsterdam

    Google Scholar 

References

  1. Büttner-Janz K (2010) Status quo of facet joint replacement. Orthopade 39: 609–622. German

    Article  PubMed  Google Scholar 

  2. Wilke HJ, Schmidt H, Werner K et al. (2006) Biomechanical evaluation of a new total posterior-element replacement system. Spine 31: 2790–2796

    Article  PubMed  Google Scholar 

  3. Zhu Q, Larson CR, Sjovold SG et al. (2007) Biomechanical evaluation of the Total Facet Arthroplasty System: 3-dimensional kinematics. Spine 32: 55–62

    Article  PubMed  Google Scholar 

  4. Phillips FM, Tzermiadianos MN, Voronov LI et al. (2009) Effects of the Total Facet Arthroplasty System after complete laminectomy-facetectomy on the biomechanics of implanted and adjacent segments. Spine J 9: 96–102

    Article  PubMed  Google Scholar 

  5. Goel VK, Mehta A, Jangra J et al. (2007) Anatomic Facet Replacement System (AFRS) restoration of lumbar segment mechanics to intact: a finite element study and in vitro cadaver investigation. SAS Journal 1: 46–54

    Article  Google Scholar 

  6. McAfee PC, Khoo LT, Pimenta L et al. (2007) Treatment of lumbar spinal stenosis with a total posterior arthroplasty prosthesis: implant description, surgical technique, and a prospective report on 29 patients. Neurosurg Focus 22: E13

    PubMed  Google Scholar 

  7. Castellvi A. The treatment of symptomatic lumbar spinal stenosis with ACADIA™. Clinical outcomes from worldwide cohort. North American Spine Society Pre-Meeting Course 2009, San Fransisco

  8. Regan JJ, Hartjen CA, Dryer RF et al. ACADIA™ facet arthroplasty pilot study: twelve months follow-up results for 20 patients at four centers. Spine Arthroplasty Society Annual Global Symposium 2009, London

    Google Scholar 

  9. Palmer DK, Inceoglu S, Cheng WK (2011) Stem fracture after total facet replacement in the lumbar spine: a report of two cases and review of the literature. Spine J 11: E15–E19

    Article  PubMed  Google Scholar 

  10. Charles YP, Persohn S, Steib JP et al. (2011) Influence of an auxiliary facet system on lumbar spine biomechanics. Spine 36: 690–699

    Article  PubMed  Google Scholar 

References

  1. Adelt D, Samani J, Kim WK, et al. (2007) Coflex interspinous stabilization: Clinical and radiological results from an international multicenter retrospective study. Paradigm Spine Journal 1

    Google Scholar 

  2. Davis RJ, Errico TJ, Bae H, Auerbach JD. Coflex interlaminar stabilization compared to posterior spinal fusion for spinal stenosis and spondylolisthesis. Two-year results from aprospective randomized multicenter FDA IDE trial. ISASS12

  3. Khoueir P, Kim A, Wang M (2007) Classification of posterior dynamic stabilization devices. Neurosurg Focus 22(1)

    Google Scholar 

  4. Matgé G. Dynamic interspinous U fixation. An alternative surgical treatment for degenerative lumbar instability. Scientific Session 2, Swiss Spine Institute, June 21, 2002

  5. Samani J (2000) Study of a semi-rigid interspinous U fixation system. Spinal Surgery, Child Orthopaedics: 1707

    Google Scholar 

  6. Senegas J (2002) Mechanical supplementation by non-rigid fixation in degenerative interverbebral lumbar segments: the Wallis system. Eur Spine J: 164–169

    Google Scholar 

  7. Swanson KE, Lindsey DP, Hsu KY et al. (2003) The effects of an interspinous implant on intervertebral disc pressure. Spine: 26–32

    Google Scholar 

  8. Tsai KJ, Murakami, Lowery GL, Hutton W (2006) A biomechanical evaluation of an interspinous device (CoflexTM) used to stabilize the lumbar spine. J Surg Orthop Adv: 167–172

    Google Scholar 

  9. Zuchermann JF, Hsu KY, Hartjen CA et al. (2004) A prospective randomized multi-center study for the treatment of lumbar stenosis with the X-STOP interspinous implant: 1-year results. Eur Spine J: 22–31

    Google Scholar 

  10. Kettler A, Drumm J, Heuer F et al. (2008) Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea. Clin Biomech: 242–247

    Google Scholar 

References

  1. Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11(6): 471–491

    Article  PubMed  Google Scholar 

  2. Vaccaro AR, Lawrence JP et al. (2008) The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis: a long-term (>4 years) pivotal study. Spine 15; 33(26): 2850–2862

    Article  Google Scholar 

References

  1. Calori GM, Albisetti W, Agus A, et al. (2007) Risk factors contributing to fracture non-unions Injury 38(S2): S11–S18

    Article  PubMed  Google Scholar 

  2. Calori GM, Phillips M, Jeetle S, et al. (2008) Classification of non-union: need for a new scoring system? Injury 39(S2): S59–S63

    Article  PubMed  Google Scholar 

References

  1. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites.J Orthop Trauma 3: 192–195

    Article  CAS  Google Scholar 

  2. Calori GM, Mazza E, Colombo M, Ripamonti C (2011) The use of bone graft substitutes in large bone defects: any specific needs? Injury 42Suppl 2: S56–S63. Epub 2011 Jul 12

    Article  PubMed  Google Scholar 

  3. Calori GM, Mazza E, Colombo M et al. (2011) Treatment of long bone non unions with polytherapy: indications and clinical results — Injury 42(6): 587–590

    Article  PubMed  CAS  Google Scholar 

References

  1. Urist MR (1965) Bone: formation by autoinduction. Science 150: 893–899

    Article  PubMed  CAS  Google Scholar 

  2. Johnson EE, Urist MR (1989) Distal metaphyseal tibial nonunions associated with significant bowing deformity and cortical bone loss: treatment with human bone morphogenetic protein (h-BMP) and internal fixation. Nihon Seikeigeka Gakkai Zasshi 63: 613–620

    PubMed  CAS  Google Scholar 

  3. Johnson EE, Urist MR, Finerman GA (1988) Repair of segmental defects of the tibia with cancellous bone grafts augmented with human bone morphogenetic protein. A preliminary report. Clin Orthop Relat Res: 249–257

    Google Scholar 

  4. Wozney JM, Rosen V, Celeste AJ et al. (1988) Novel regulators of bone formation: molecular clones and activities. Science 242: 1528–1534

    Article  PubMed  CAS  Google Scholar 

  5. Reddi AH (1998) Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 16: 247–252

    Article  PubMed  CAS  Google Scholar 

  6. Lutolf MP, Weber FE, Schmoekel HG et al. (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21: 513–518

    Article  PubMed  CAS  Google Scholar 

  7. Weber FE, Eyrich G, Gratz KW et al. (2002) Slow and continuous application of human recombinant bone morphogenetic protein via biodegradable poly(lactide-co-glycolide) foamspheres. Int J Oral Maxillofac Surg 31: 60–65

    Article  PubMed  CAS  Google Scholar 

  8. Hanseler P, Jung UW, Jung RE et al. (2012) Analysis of hydrolyzable polyethylene glycol hydrogels and deproteinized bone mineral as delivery systems for glycosylated and non-glycosylated bone morphogenetic protein-2. Acta Biomater 8: 116–123

    Article  PubMed  CAS  Google Scholar 

  9. Miguel BS, Ghayor C, Ehrbar M et al. (2009) N-methyl pyrrolidone as a potent bone morphogenetic protein enhancer for bone tissue regeneration. Tissue Eng Part A 15: 2955–2963

    Article  PubMed  CAS  Google Scholar 

  10. Carragee EJ, Ghanayem AJ, Weiner BK et al. (2011) A challenge to integrity in spine publications: years of living dangerously with the promotion of bone growth factors. Spine J 11: 463–468

    Article  PubMed  Google Scholar 

  11. Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11: 471–491

    Article  PubMed  Google Scholar 

  12. Carragee EJ, Mitsunaga KA, Hurwitz EL, Scuderi GJ (2011) Retrograde ejaculation after anterior lumbar interbody fusion using rhBMP-2: a cohort controlled study. Spine J 11: 511–516

    Article  PubMed  Google Scholar 

References

  1. Cahill KS, Chi JH, Day A, Claus EB (2009) Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA 302(1): 58–66

    Article  PubMed  CAS  Google Scholar 

  2. Cahill KS, Chi JH, Groff MW et al. (2011) Outcomes for single-level lumbar fusion: the role of bone morphogenetic protein. Spine 36: 2354–2362

    Article  PubMed  Google Scholar 

  3. Choudhry OJ, Christiano LD, Singh R et al. (2012) Bone morphogenetic protein-induced inflammatory cyst formation after lumbar fusion causing nerve root compression. J Neurosurg Spine 16: 296–301

    Article  PubMed  Google Scholar 

  4. Deyo RA, Ching A, Matsen L et al. (2012) Use of bone morphogenetic proteins in spinal fusion surgery for older adults with lumbar stenosis: trends, complications, repeat surgery, and charges. Spine 37: 222–230

    Article  PubMed  Google Scholar 

  5. Helgeson MD, Lehman RA Jr, Patzkowski JC et al. (2011) Adjacent vertebral body osteolysis with bone morphogenetic protein use in transforaminal lumbar interbody fusion. Spine J 11: 507–510

    Article  PubMed  Google Scholar 

  6. Lad SP, Nathan JK, Boakye M (2011) Trends in the use of bone morphogenetic protein as a substitute to autologous iliac crest bone grafting for spinal fusion procedures in the United States. Spine 36: E274–F281

    Article  PubMed  Google Scholar 

  7. Williams BJ, Smith JS, Fu KM et al. (2011) Does BMP increase the incidence of perioperative complications in spinal fusion? A comparison of 55,862 cases of spinal fusion with and without BMP. Spine [Epub ahead of print]

    Google Scholar 

  8. Yaremchuk K, Toma M, Somers M (2010) Acute airway obstruction associated with the use of bone-morphogenetic protein in cervical spinal fusion. Laryngoscope 120Suppl 4: S140

    Article  PubMed  Google Scholar 

References

  1. Helder MN, Knippenberg M, Klein-Nulend J, Wuisman PIJM (2007) Stem cells from adipose tissue allow challenging new concepts for regenerative medicine. Tissue Eng 13(8): 1799–1808

    Article  PubMed  CAS  Google Scholar 

  2. Vergroesen PP, Kroeze RJ, Helder MN, Smit TH (2011) The Use of Poly(L-lactide-co-caprolactone) as a Scaffold for Adipose Stem Cells in Bone Tissue Engineering: Application in a Spinal Fusion Model. Macromol Biosci 11(6): 722–730

    Article  PubMed  CAS  Google Scholar 

  3. Jurgens WJ, Kroeze RJ, Bank RA et al. (2011) Rapid attachment of adipose stromal cells on resorbable polymeric scaffolds facilitates the one-step surgical procedure for cartilage and bone tissue engineering purposes. J Orthop Res 29(6): 853–860

    Article  PubMed  CAS  Google Scholar 

  4. Hoogendoorn RJW, Wuisman PIJM, Smit TH et al. (2007) Experimental Intervertebral Disc Degeneration induced by Chondroitinase ABC in the Goat. Spine 32(17): 1816–1825

    Article  PubMed  Google Scholar 

  5. Hoogendoorn RJW, Helder MN, Kroeze RJ et al. (2008) Reproducible long term disc degeneration in a large animal model. Spine 33(9): 949–954

    Article  PubMed  Google Scholar 

  6. Hoogendoorn RJW, Zandieh Doulabi B, Huang CL et al. (2008) Molecular changes in the degenerated goat intervertebral disc. Spine 33(16): 1714–1721

    Article  PubMed  Google Scholar 

  7. Paul CPL, Zuiderbaan HA, Zandieh Doulabi B et al. (2012) Simulated-physiological loading conditions preserve biological and mechanical properties of caprine lumbar intervertebral discs in ex vivo culture. PloS One 7(3): E33147

    Article  PubMed  CAS  Google Scholar 

  8. Ganey T, Hutton WC, Moseley T et al. (2009) Intervertebral disc repair using adipose tissue-derived stem and regenerative cells: experiments in a canine model. Spine (Phila Pa 1976) 34(21): 2297–2304

    Article  Google Scholar 

References

  1. Silbermann J, Riese F, Allam Y et al. (2011) Computer tomography assessment of pedicle screw placement in lumbar and sacral spine: comparison between free-hand and O-arm® based navigation techniques. Eur Spine J 20(6): 875–881

    Article  PubMed  CAS  Google Scholar 

  2. Wood M, Mannion R (2011) A Comparison of CT-based navigation techniques for minimally invasive lumbar pedicle screw placement. J Spinal Disord Tech 24(1): E1–E5

    Article  PubMed  Google Scholar 

  3. Metz L, Burch S (2008) Computer-assisted surgical planning and image-guided navigation in refractory adult scoliosis surgery. Spine 33(9): E287–E292

    Article  PubMed  Google Scholar 

  4. Ishikawa Y, Kanemura T, Yoshida G et al. (2011) Intraoperative, full-rotation, three-dimensional image (O-arm)-based navigation system for cervical pedicle screw insertion. J Neurosurg Spine 15(5): 472–478

    Article  PubMed  Google Scholar 

  5. Schils F (2011) O-arm guided balloon kyphoplasty: preliminary experience of 16 consecutive patients. Acta Neurochir 109: 175–178

    Article  Google Scholar 

  6. Costa F, Tomei M, Sassi M et al. (2011) Evaluation of the rate of decompression in anterior cervical corpectomy using an intra-operative computerized tomography scan (O-arm® system). Eur Spine J 21(2): 359–363

    Article  PubMed  Google Scholar 

  7. Boachie-Adjei O, Girardi FP, Bansal M, Rawlins BA. Safety and efficacy of pedicle screw placement for adult spinal deformity with a pedicle-probing conventional anatomic technique. J Spinal Disord 13(6): 496–500

  8. Kim YJ, Lenke LG, Bridwell KH et al. (2004) Free hand pedicle screw placement in the thoracic spine: is it safe? Spine (Phila Pa 1976) 1; 29(3): 333–342

    Article  Google Scholar 

  9. Kim YW, Lenke LG, Kim YJ et al. (2008) Free-hand pedicle screw placement during revision spinal surgery analysis of 552 screws. Spine (Phila Pa 1976) 33(10): 1141–1148

    Article  Google Scholar 

References

  1. Yang YL, Zhou DS, He JL (2011) Comparison of isocentric C-arm 3-dimensional navigation and conventional fluoroscopy for C1 lateral mass and C2 pedicle screw placement for atlantoaxial instability. J Spinal Disord Tech Nov 18 [Epub ahead of print]

    Google Scholar 

  2. Martirosyan NL, Kalb S, Cavalcanti DD et al. (2011) Comparative analysis of isocentric 3-dimensional C-arm fluoroscopy and biplanar fluoroscopy for anterior screw fixation in odontoid fractures. J Spinal Disord Tech Dec 5 [Epub ahead of print]

    Google Scholar 

  3. Schafer S, Nithiananthan S, Mirota DJ et al. (2011) Mobile C-arm cone-beam CT for guidance of spine surgery: image quality, radiation dose, and integration with interventional guidance. Med Phys 38(8): 4563–4574

    Article  PubMed  CAS  Google Scholar 

References

  1. Zausinger S, Scheder B, Uhl E et al. (2009) Intraoperative computed tomography with integrated navigation system in spinal stabilizations. Spine 34: 2919–2926

    Article  PubMed  Google Scholar 

  2. Sugimoto Y, Ito Y, Tomioka M et al. (2010) Clinical accuracy of three-dimensional fluoroscopy (IsoC-3D)-assisted upper thoracic pedicle screw insertion. Acta Med Okayama 64: 209–212

    PubMed  Google Scholar 

  3. Geerling J, Gösling T, Gösling A, et al. (2008) Navigated pedicle screw placement: experimental comparison between CT- and 3D fluoroscopy-based techniques. Comput Aided Surg 13: 157–166

    PubMed  Google Scholar 

  4. Kotsianos D, Rock C, Euler E et al. (2001) 3-D imaging with a mobile surgical image enhancement equipment (ISO-C-3D). Initial examples of fracture diagnosis of peripheral joints in comparison with spiral CT and conventional radiology. Unfallchirurg 104: 834–838

    CAS  Google Scholar 

  5. Kluba T, Rühle T, Schulze-Bövingloh A et al (2009) Reproducibility of readings of ISO C 3D and CT lumbar pedicle screw scans. Rofo 181: 477–482

    Article  PubMed  CAS  Google Scholar 

  6. Rao G, Brodke DS, Rondina M, Dailey AT (2008) Comparison of computerized tomography and direct visualization in thoracic pedicle screw placement. J Neurosurg 97: 223–226

    Google Scholar 

  7. Garber ST, Bisson EF, Schmidt MH (2012) Comparison of three-dimensional fluoroscopy versus postoperative computed tomography for the assessment of accurate screw placement after instrumented spine surgery. Global Spine J 2: 95–98

    Article  Google Scholar 

  8. Rampersaud YR, Foley KT, Shen AC et al. (2000) Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine 25: 2637–2645

    Article  PubMed  CAS  Google Scholar 

  9. Smith HE, Welsch MD, Sasso RC, Vaccaro AR (2000) Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs computer-assisted image guidance with intraoperative three-dimensional imaging. J Spinal Cord Med 31: 532–537

    Google Scholar 

  10. Richards PJ, George J, Metelko M, Brown M (2010) Spine computed tomography doses and cancer induction. Spine 35: 430–433

    Article  PubMed  Google Scholar 

References

  1. Deschenes S, Charron G, Beaudoin G et al. (2010) Diagnostic imaging of spinal deformities. Reducing patients radiation dose with a new slot-scanning X-ray imager. Spine 35: 989–994

    Google Scholar 

  2. Illes T, Tunyogi-Csapo M (2011) Breakthrough in three-dimensional scoliosis diagnosis: significance of horizontal plane view and vertebra vectors. Eur Spine J 20: 135–143

    Article  PubMed  Google Scholar 

References

  1. Dubousset J, Charpak G, Dorion I et al. (2005) Le système EOS, nouvelle imagerie ostéo-articulaire basse dose en position debout (in French). Mem Acad Nat Chir 4(4): 22–27

    Google Scholar 

  2. Barrey C, Jund J, Noseda O, Roussouly P (2007) Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J 16: 1459–1467

    Article  PubMed  Google Scholar 

  3. Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7: 99–103

    Article  PubMed  CAS  Google Scholar 

  4. Kobayashi T, Atsuta Y, Matsuno T, Takeda N (2004) A longitudinal study of congruent sagittal spinal alignment in an adult cohort. Spine 29: 671–676

    Article  PubMed  Google Scholar 

  5. Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 30: 346–353

    Article  PubMed  Google Scholar 

  6. Lafage V, Schwab F, Skalli W et al. (2008) Standing balance and sagittal plane spinal deformity: analysis of spinopelvic and gravity line parameters. Spine 33: 1572–1578

    Article  PubMed  Google Scholar 

  7. Korovessis PG, Dimas A, Iliopoulos P, Lambiris E (2002) Correlative analysis of lateral vertebral radiographic variables and medical outcomes study short-form health survey: a comparative study in asymptomatic volunteers versus patients with low back pain. J Spinal Disord Tech 15: 384–390

    Article  PubMed  Google Scholar 

  8. Barrey C, Roussouly P, Perrin G et al. (2011) Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J 20(5): 626–633

    Article  PubMed  Google Scholar 

  9. Lazennec JY, Ramare S, Arafati N et al. (2000) Sagittal alignment in lumbosacral fusion: relations between radiological parameters and pain. Eur Spine J 9: 47–55

    Article  PubMed  CAS  Google Scholar 

  10. Vital JM, Gille O, Gangnet N (2004) Equilibre sagittal et applications cliniques (in French). Rev Rhum 71: 120–128

    Article  Google Scholar 

References

  1. Kalifa G, Charpak Y, Maccia C et al. (1998) Evaluation of a new low-dose digital X-ray device: first dosimetric and clinical results in children. Pediatr Radiol 28(7): 557–561

    Article  PubMed  CAS  Google Scholar 

  2. Dubousset J, Charpak G, Skalli W et al. (2007) EOS stereo-radiography system: whole-body simultaneous anteroposterior and lateral radiographs with very low radiation dose. Rev Chir Ortho 93(sup 6): 141–143

    CAS  Google Scholar 

  3. Mitulescu A, Skalli W, Mitton D, Deguise J (2002) Three-dimensional surface rendering reconstruction of scoliotic vertebrae using a non stereo-corresponding points technique. Euro Spine J 39: 152–158

    Google Scholar 

  4. Gangnet N, Dumas R, V Pomero et al. (2006) Three-dimensionnal spinal and pelvic aligment in an asymptomatic population. Spine 31: 507–512

    Article  Google Scholar 

  5. Steffen JS, Obeid I, Aurouer N et al. (2010) 3D postural balance with regard to gravity line: an evaluation in the transversal plane on 93 patients and 23 asymptomatic volunteers. Eur Spine J 19: 760–767

    Article  PubMed  Google Scholar 

  6. Obeid I, Hauger O, Aunoble S et al. (2011) Global analysis of sagittal spinal alignment in major deformities: correlation between lack of lumar lordosis and flexion of the knee. Eur Spine J 20S5: 681–685

    Article  PubMed  Google Scholar 

  7. Barrey C, Roussouly P, Perrin G, Le Huec JC (2011) Sagittal balance disorders in severe degenerative spine. Can we identify the compenstory mechanisms? Eur Spine J 20S5: 634–640

    Article  Google Scholar 

  8. Labelle H, Dansereau J, Bellefleur C, Poitras B (1996) Three-dimensional effect of the Boston brace on the thoracic spine and rib cage. Spine 21: 59–64

    Article  PubMed  CAS  Google Scholar 

  9. Gille O, Champain N, Benchikh-El-Fegoun A et al. (2007) Reliability of 3D reconstruction of the spine of mild scoliotic patients. Spine 32: 568–573

    Article  PubMed  Google Scholar 

  10. Ilharreborde B, Steffen JS, Nectoux E et al. (2011) Angle measurement reproductibility using EOS 3D reconstructions in adolescent idiopathic scoliosis treated by posterior instrumentation. Spine 36: 1306–1313

    Article  Google Scholar 

  11. Aurouer N, Obeid I, Gille O et al. (2009) Computerized preoperative planning for correction of sagittal deformity of the spine. Surg Radiol Anat 30: 781–792

    Article  Google Scholar 

  12. Rousseau MA, Laporte S, Chavary-Bernier E et al. (2007) Reproducibility of measuring the shape and three-dimensional position of cervical vertebrae in upright position using the EOS stereoradiography system. Spine 32: 2569–2572

    Article  PubMed  Google Scholar 

  13. Demezon H. Spinal global reference parameters calculated on asymptomatic subjects with EOS System. Medicine Thesis no 3042, Bordeaux (France)

References

  1. Bolger C, Carozzo C, Roger T et al. (2006) A preliminary study of reliability of impedance measurement to detect iatrogenic initial pedicle perforation (in the porcine model). Eur Spine J 15: 316–320

    Article  PubMed  Google Scholar 

  2. Bolger C, Kelleher MO, McEvoy L et al. (2007) Electrical conductivity measurement: a new technique to detect iatrogenic initial pedicle perforation. Eur Spine J 16(11): 1919–1924

    Article  PubMed  Google Scholar 

  3. Bolger C, Brayda-Bruno M, Kaelin A et al. (2003) A new device to detect iatrogenic initial vertebral cortex perforation: first clinical results [abstract]. Eur Spine J 12(3)

    Google Scholar 

  4. Bai YS, Niu YF, Chen ZQ et al. (2012) Comparison of the pedicle screws placement between electronic conductivity device and normal pedicle finder in posterior surgery of scoliosis. J Spinal Disord Tech [Epub ahead of print]

    Google Scholar 

  5. Chaput CD, George K, Samdani AF et al. Reduction in radiation (fluoroscopy) while maintaining safe placement of pedicle screws during lumbar spine fusion. Spine (Phila PA 1976) 37(21): E1305–E1309

    Google Scholar 

References

  1. Hasegawa K, Koike T, Shimoda H et al. (2011) A 534 cases prospective study to determine an alarm point in intraoperative neuromonitoring. J Spine Res 2: 291–296

    Google Scholar 

  2. Hilibrand AS, Schwartz DM, Sethuraman DV et al. (2004) Comparison of transcranial electric motor and somatosensory evoked potential monitoring during cervical spine surgery. J Bone Joint Surg Am 86: 1248–1253

    PubMed  Google Scholar 

  3. Matsuda H, Shimazu A (1989) Intraoperative spinal cord monitoring using electric responses to stimulation of caudal spinal cord or motor cortex. In: Desmedt JE, editor. Neuromonitoring in surgery. Amsterdam: Elsevier; pp 175–190

    Google Scholar 

  4. Nakamae T, Tanaka N, Nakanishi K et al. (2010) Quantitative assessment of myelopathy patients using motor evoked potentials produced by transcranial magnetic stimulation. Eur Spine J 19: 685–690

    Article  PubMed  Google Scholar 

  5. Nuwer MR, Dawson EG, Carlson LG et al. (1995) Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 96: 6–11

    Article  PubMed  CAS  Google Scholar 

  6. Sala F, Palandri G, Basso E et al. (2006) Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 58: 1129–1143

    Article  PubMed  Google Scholar 

  7. Sutter M, Eggspuehler A, Grob D et al. (2007) The diagnostic value of multimodal intraoperative monitoring (MIOM) during spine surgery: a prospective study of 1017 patients. Eur Spine J 16: S162–S170

    Article  PubMed  Google Scholar 

  8. Schwartz DM, Auerbach JD, Dormans JP et al. (2007) Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am 89A: 2440–2449

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casamitjana Ferrandiz, J.M., Barrey, C., Skalli, W. et al. Guest speakers lectures, oral presentations, clinical case presentations. ArgoSpine News J 24, 95–142 (2012). https://doi.org/10.1007/s12240-012-0066-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12240-012-0066-6

Keywords

Navigation