Skip to main content

Advertisement

Log in

Carbon Dioxide Fluxes and Their Environmental Control in a Reclaimed Coastal Wetland in the Yangtze Estuary

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Large areas of natural coastal wetlands have suffered severely from human-driven damages or conversions (e.g., land reclamations), but coastal carbon flux responses in reclaimed wetlands are largely unknown. The lack of knowledge of the environmental control mechanisms of carbon fluxes also limits the carbon budget management of reclaimed wetlands. The net ecosystem exchange (NEE) in a coastal wetland at Dongtan of Chongming Island in the Yangtze estuary was monitored throughout 2012 using the eddy covariance technique more than 14 years after this wetland was reclaimed using dykes to stop tidal flooding. The driving biophysical variables of NEE were also examined. The results showed that NEE displayed marked diurnal and seasonal variations. The monthly mean NEE showed that this ecosystem functioned as a CO2 sink during 9 months of the year, with a maximum value in September (−101.2 g C m−2) and a minimum value in November (−8.2 g C m−2). The annual CO2 balance of the reclaimed coastal wetland was −558.4 g C m−2 year−1. The ratio of ecosystem respiration (ER) to gross primary production (GPP) was 0.57, which suggests that 57 % of the organic carbon assimilated by wetland plants was consumed by plant respiration and soil heterotrophic respiration. Stepwise multiple linear regressions suggested that temperature and photosynthetically active radiation (PAR) were the two dominant micrometeorological variables driving seasonal variations in NEE, while soil moisture (M s) and soil salinity (PSs) played minor roles. For the entire year, PAR and daytime NEE were significantly correlated, as well as temperature and nighttime NEE. These nonlinear relationships varied seasonally: the maximum ecosystem photosynthetic rate (A max), apparent quantum yield (∂), and Q 10 reached their peak values during summer (17.09 μmol CO2 m−2 s−1), autumn (0.13 μmol CO2 μmol−1 photon), and spring (2.16), respectively. Exceptionally high M s or PSs values indirectly restricted ecosystem CO2 fixation capacity by reducing the PAR sensitivity of the NEE. The leaf area index (LAI) and live aboveground biomass (AGBL) were significantly correlated with NEE during the growing season. Although the annual net CO2 fixation rate of the coastal reclaimed wetland was distinctly lower than the unreclaimed coastal wetland in the same region, it was quite high relative to many inland freshwater wetlands and estuarine/coastal wetlands located at latitudes higher than this site. Thus, it is concluded that although the net CO2 fixation capacity of the coastal wetland was reduced by land reclamation, it can still perform as an important CO2 sink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen, R.G., Pereira, L.S., Raes, D., et al. 1998. Crop evapotranspiration—guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300: 6541.

  • Alm, J., A. Talanov, S. Saarnio, et al. 1997. Reconstruction of the carbon balance for microsites in a boreal oligotrophic pine fen. Finland. Oecologia 110(3): 423–431.

    Article  Google Scholar 

  • An, S., H. Li, B. Guan, et al. 2007. China’s natural wetlands: past problems, current status, and future challenges. AMBIO: A Journal of the Human Environment 36(4): 335–342.

    Article  CAS  Google Scholar 

  • Anthoni, P.M., B.E. Law, and M.H. Unsworth. 1999. Carbon and water vapor exchange of an open-canopied ponderosa pine ecosystem. Agricultural and Forest Meteorology 95(3): 151–168.

  • Arneth, A., J. Kurbatova, O. Kolle, et al. 2002. Comparative ecosystem—atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes. Tellus B 54(5): 514–530.

    Article  Google Scholar 

  • Aubinet, M., A. Grelle, A. Ibrom, et al. 2000. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Advances in Ecological Research 30(1): 113–175.

  • Aurela, M., T. Laurila, and J.P. Tuovinen. 2004. The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophysical Research Letters 31(16), L16119.

    Article  Google Scholar 

  • Aurela, M., T. Riutta, T. Laurila, et al. 2007. CO2 exchange of a sedge fen in southern Finland—the impact of a drought period. Tellus B 59(5): 826–837.

    Article  Google Scholar 

  • Baldocchi, D.D., B.B. Hincks, and T.P. Meyers. 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 1331–1340.

  • ​Baldocchi, D.D., J. Finnigan, K. Wilson, et al. 2000. On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary-Layer Meteorology 96(1–2): 257–291.

  • Barr, J.G., V. Engel, J.D. Fuentes, et al. 2010. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park. Journal of Geophysical Research 115(G2), G02020.

    Article  Google Scholar 

  • Bart, D., and J.M. Hartman. 2000. Environmental determinants of Phragmites australis expansion in a New Jersey salt marsh: an experimental approach. Oikos 89(1): 59–69.

    Article  Google Scholar 

  • Bonneville, M.C., I.B. Strachan, E.R. Humphreys, et al. 2008. Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties. Agricultural and Forest Meteorology 148(1): 69–81.

    Article  Google Scholar 

  • Bouillon, S., A.V. Borges, E. Castañeda-moya, et al. 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles 22(2): 1–12.

    Article  Google Scholar 

  • Boulord, A., M. Zhang, T.H. Wang, X.M. Wang, and F. Jiguet. 2012. Reproductive success of the threatened Reed Parrotbill Paradoxornis heudei in non-harvested and harvested reedbeds in the Yangtze River estuary, China. Bird Conservation International 22: 339–347.

    Article  Google Scholar 

  • Bridgham, S.D., J.P. Megonigal, J.K. Keller, et al. 2006. The carbon balance of North American wetlands. Wetlands 26(4): 889–916.

    Article  Google Scholar 

  • Bubier, J., P. Crill, A. Mosedale, et al. 2003. Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Global Biogeochemical Cycles 17(2): 1066.

    Article  Google Scholar 

  • Chabbi, A., K.L. McKee, and I.A. Mendelssohn. 2000. Fate of oxygen losses from Typha domingensis (Typhaceae) and Cladium jamaicense (Cyperaceae) and consequences for root metabolism. American Journal of Botany 87(8): 1081–1090.

    Article  CAS  Google Scholar 

  • Chmura, G.L., S.C. Anisfeld, D.R. Cahoon, et al. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17(4): 1111.

    Article  Google Scholar 

  • Clark, K.L., H.L. Gholz, J.B. Moncrieff, et al. 1999. Environmental controls over net exchanges of carbon dioxide from contrasting Florida ecosystems. Ecological Applications 9(3): 936–948.

    Article  Google Scholar 

  • Connor, R.F., G.L. Chmura, and C.B. Beecher. 2001. Carbon accumulation in Bay of Fundy salt marshes: Implications for restoration of reclaimed marshes. Global Biogeochemical Cycles 15(4): 943–954.

    Article  CAS  Google Scholar 

  • Donato, D.C., J.B. Kauffman, D. Murdiyarso, et al. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4(5): 293–297.

    Article  CAS  Google Scholar 

  • Duarte, C.M., J.J. Middelburg, and N. Caraco. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2(1): 1–8.

    Article  CAS  Google Scholar 

  • Ehleringer, J., and R.W. Pearcy. 1983. Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiology 73(3): 555–559.

    Article  CAS  Google Scholar 

  • Falge, E., D. Baldocchi, R. Olson, et al. 2001. Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology 107(1): 71–77.

    Article  Google Scholar 

  • Fernandez, S., C. Santin, J. Marquinez, and M.A. Alvarez. 2010. Saltmarsh soil evolution after land reclamation in Atlantic estuaries (Bay of Biscay, North coast of Spain). Geomorphology 114: 497–507.

    Article  Google Scholar 

  • Flanagan, L.B., and B.G. Johnson. 2005. Johnson, Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agricultural and Forest Meteorology 130(3): 237–253.

    Article  Google Scholar 

  • Frolking, S.E., J.L. Bubier, T.R. Moore, et al. 1998. Relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands. Global Biogeochemical Cycles 12(1): 115–126.

    Article  CAS  Google Scholar 

  • Gedan, K.B., B.R. Silliman, and M.D. Bertness. 2009. Centuries of human-driven change in salt marsh ecosystems. Marine Science 1: 117–141.

    Article  Google Scholar 

  • Glenn, A.J., L.B. Flanagan, K.H. Syed, et al. 2006. Comparison of net ecosystem CO2 exchange in two peatlands in western Canada with contrasting dominant vegetation, Sphagnum and Carex. Agricultural and Forest Meteorology 140(1): 115–135.

    Article  Google Scholar 

  • GSICI (Group of Shanghai Island Comprehensive Investigation). 1996. Report of the Shanghai island comprehensive investigation. Shanghai: Shanghai Science and Technology Press. in Chinese.

  • Guo H. 2010. Carbon fluxes over an estuarine wetland: in situ measurement and modeling. PhD thesis, Fudan University. in Chinese.

  • Guo, H., A. Noormets, B. Zhao, et al. 2009. Tidal effects on net ecosystem exchange of carbon in an estuarine wetland. Agricultural and Forest Meteorology 149(11): 1820–1828.

    Article  Google Scholar 

  • Han, G., L. Yang, J. Yu, et al. 2013. Environmental controls on net ecosystem CO2 exchange over a reed (Phragmites australis) wetland in the Yellow River Delta, China. Estuaries and Coasts 36(2): 401–413.

    Article  CAS  Google Scholar 

  • Han, G., Q. Xing, J. Yu, et al. 2014. Agricultural reclamation effects on ecosystem CO2 exchange of a coastal wetland in the Yellow River Delta. Agriculture, Ecosystems & Environment 196: 187–198.

    Article  Google Scholar 

  • Heikkinen, J.E.P., V. Elsakov, and P.J. Martikainen. 2002. Carbon dioxide and methane dynamics and annual carbon balance in tundra wetland in NE Europe, Russia. Global Biogeochemical Cycles 16(4): 62. -1-62-15.

    Article  Google Scholar 

  • Hirota, M., Y. Tang, Q. Hu, et al. 2006. Carbon dioxide dynamics and controls in a deep-water wetland on the Qinghai-Tibetan Plateau. Ecosystems 9(4): 673–688.

    Article  CAS  Google Scholar 

  • Hirota, M., Y. Senga, Y. Seike, et al. 2007. Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere 68(3): 597–603.

    Article  CAS  Google Scholar 

  • Hopkinson, C.S., W.J. Cai, and X. Hu. 2012. Carbon sequestration in wetland dominated coastal systems—a global sink of rapidly diminishing magnitude. Current Opinion in Environmental Sustainability 4(2): 186–194.

    Article  Google Scholar 

  • Houghton, R.A., and G.M. Woodwell. 1980. The flax pond ecosystem study: exchanges of CO2 between a salt marsh and the atmosphere. Ecology 61(6): 1434–1445.

    Article  Google Scholar 

  • Hu, H., D.Q. Wang, Y.J. Li, et al. 2014. Greenhouse gases fluxes at Chongming Dongtan Phragmites australis wetland and the influencing factors. Research of Environmental Sciences 27(1): 43–50. in Chinese with English Abstract.

    CAS  Google Scholar 

  • Jackson, R.B., J.L. Banner, E.G. Jobbágy, et al. 2002. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418(6898): 623–626.

    Article  CAS  Google Scholar 

  • Janssens, I.A., H. Lankreijer, G. Matteucci, et al. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology 7(3): 269–278.

    Article  Google Scholar 

  • Jimenez K L, Starr G, Staudhammer C L, et al. 2012. Carbon dioxide exchange rates from short-and long-hydroperiod Everglades freshwater marsh. Journal of Geophysical Research: Biogeosciences (2005–2012), 117(G4).

  • Joiner, D.W., P.M. Lafleur, J.H. McCaughey, et al. 1999. Interannual variability in carbon dioxide exchanges at a boreal wetland in the BOREAS northern study area. Journal of Geophysical Research: Atmospheres (1984–2012) 104(D22): 27663–27672.

    Article  CAS  Google Scholar 

  • Jones, M.B., and S.W. Humphries. 2002. Impacts of the C4 sedge Cyperus papyrus L. on carbon and water fluxes in an African wetland. Hydrobiologia 488(1–3): 107–113.

    Article  CAS  Google Scholar 

  • Kathilankal, J.C., T.J. Mozdzer, J.D. Fuentes, et al. 2008. Tidal influences on carbon assimilation by a salt marsh. Environmental Research Letters 3(4): 044010. doi:10.1088/1748-9326/3/4/044010.

    Article  Google Scholar 

  • Kirwan, M.L., and J.P. Megonigal. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504(7478): 53–60.

    Article  CAS  Google Scholar 

  • Kljun, N., P. Calanca, M.W. Rotach, et al. 2004. A simple parameterization for flux footprint predictions. Boundary Layer Meteorology 112(3): 503–523.

    Article  Google Scholar 

  • Laffoley, D., and G.D. Grimsditch. 2009. The management of natural coastal carbon sinks. IUCN.

  • Lafleur, P.M., N.T. Roulet, and S.W. Admiral. 2001. Annual cycle of CO2 exchange at a bog peatland. Journal of Geophysical Research 106(D3): 3071–3081.

    Article  CAS  Google Scholar 

  • Laudicina, V.A., M.D. Hurtado, L. Badalucco, et al. 2009. Soil chemical and biochemical properties of a salt-marsh alluvial Spanish area after long-term reclamation. Biology and Fertility of Soils 45(7): 691–700.

    Article  CAS  Google Scholar 

  • Lee, X., J.D. Fuentes, R.M. Staebler, et al. 1999. Long-term observation of the atmospheric exchange of CO2 with a temperate deciduous forest in southern Ontario, Canada. Journal of Geophysical Research: Atmospheres (1984–2012) 104(D13): 15975–15984.

    Article  CAS  Google Scholar 

  • Livesley, S.J., and S.M. Andrusiak. 2012. Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store. Estuarine, Coastal and Shelf Science 97: 19–27.

    Article  CAS  Google Scholar 

  • Low-Décarie, E., C. Chivers, and M. Granados. 2014. Rising complexity and falling explanatory power in ecology. Frontiers in Ecology and the Environment 12(7): 412–418.

    Article  Google Scholar 

  • Ma, A., and J. Lu. 2011. Net ecosystem exchange of carbon and tidal effects in Chongxi wetland, Yangtze Estuary. Research of Environmental Sciences 24(7): 716–721. In Chinese, with English abstract.

    CAS  Google Scholar 

  • Mauder, M., and T. Foken. 2004. Documentation and Instruction Manual of the Eddy Covariance Software Package TK2. Universität Bayreuth, Abteilung Mikrometeorologie: Arbeitsergebnisse 26, ISSN 1614–8924, 44 pp.

  • Mcleod, E., G.L. Chmura, S. Bouillon, et al. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9(10): 552–560.

    Article  Google Scholar 

  • Miller, W.D., S.C. Neubauer, and I.C. Anderson. 2001. Effects of sea level induced disturbances on high salt marsh metabolism. Estuaries 24(3): 357–367.

    Article  Google Scholar 

  • Moore, T.R., N.T. Roulet, and J.M. Waddington. 1998. Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Climatic Change 40(2): 229–245.

    Article  CAS  Google Scholar 

  • Moreno-Sotomayor, A., A. Weiss, E.T. Paparozzi, et al. 2002. Stability of leaf anatomy and light response curves of field grown maize as a function of age and nitrogen status. Journal of Plant Physiology 159(8): 819–826.

    Article  CAS  Google Scholar 

  • Neubauer, S.C. 2013. Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology. Estuaries and Coasts 36(3): 491–507.

    Article  CAS  Google Scholar 

  • Neubauer, S.C., W.D. Miller, and I.C. Anderson. 2000. Carbon cycling in a tidal freshwater marsh ecosystem: a carbon gas flux study. Marine Ecology Progress Series 199: 13–30.

    Article  CAS  Google Scholar 

  • Odum, E.P. 1971. Fundamentals of ecology, 3rd ed, 546. Philadelphia: WB Saunders.

    Google Scholar 

  • Pendleton, L., D.C. Donato, B.C. Murray, et al. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7(9), e43542.

    Article  CAS  Google Scholar 

  • Poffenbarger, H.J., B.A. Needelman, and J.P. Megonigal. 2011. Salinity influence on methane emissions from tidal marshes. Wetlands 31(5): 831–842.

    Article  Google Scholar 

  • Reichstein, M., E. Falge, D. Baldocchi, et al. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11(9): 1424–1439.

    Article  Google Scholar 

  • Roman, C.T., W.A. Niering, and R.S. Warren. 1984. Salt marsh vegetation change in response to tidal restriction. Environmental Management 8: 141–149.

    Article  Google Scholar 

  • Ruimy, A., P.G. Jarvis, D.D. Baldocchi, et al. 1995. CO2 fluxes over plant canopies and solar radiation: a review. Advances in Ecological Research 26: 1–68.

    Article  Google Scholar 

  • Schäfer, K.V.R., R. Tripathee, F. Artigas, et al. 2014. Carbon dioxide fluxes of an urban tidal marsh in the Hudson-Raritan estuary. Journal of Geophysical Research, Biogeosciences 119(11): 2065–2081.

    Article  Google Scholar 

  • Schedlbauer, J.L., S.F. Oberbauer, G. Starr, et al. 2010. Seasonal differences in the CO2 exchange of a short-hydroperiod Florida Everglades marsh. Agricultural and Forest Meteorology 150(7): 994–1006.

    Article  Google Scholar 

  • Shurpali, N.J., S.B. Verma, J. Kim, et al. 1995. Carbon dioxide exchange in a peatland ecosystem. Journal of Geophysical Research 100(D7): 14319–14326.

    Article  Google Scholar 

  • Silvola, J., J. Alm, U. Ahlholm, et al. 1996. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. Journal of Ecology 84(2): 219–228.

    Article  Google Scholar 

  • Sonnentag, O., G. Van der Kamp, A.G. Barr, et al. 2010. On the relationship between water table depth and water vapor and carbon dioxide fluxes in a minerotrophic fen. Global Change Biology 16(6): 1762–1776.

    Article  Google Scholar 

  • Sun, S., Y. Cai, and X. Tian. 2003. Salt marsh vegetation change after a short-term tidal restriction in the Changjiang estuary. Wetlands 23: 257–266.

    Article  Google Scholar 

  • Syed, K.H., L.B. Flanagan, P.J. Carlson, et al. 2006. Environmental control of net ecosystem CO2 exchange in a treed, moderately rich fen in northern Alberta. Agricultural and Forest Meteorology 140(1): 97–114.

    Article  Google Scholar 

  • Tang, J., D.D. Baldocchi, and L. Xu. 2005. Tree photosynthesis modulates soil respiration on a diurnal time scale. Global Change Biology 11(8): 1298–1304.

    Article  Google Scholar 

  • Teal, J.M., and L. Weishar. 2005. Ecological engineering, adaptive management, and restoration management in Delaware Bay salt marsh restoration. Ecological Engineering 25(3): 304–314.

    Article  Google Scholar 

  • Verville, J.H., S.E. Hobbie, F.S. Chapin III, et al. 1998. Response of tundra CH4 and CO2 flux to manipulation of temperature and vegetation. Biogeochemistry 41(3): 215–235.

    Article  CAS  Google Scholar 

  • Webb, E.K., G.I. Pearman, and R. Leuning. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society 106(447): 85–100.

  • Weston, N.B., S.C. Neubauer, D.J. Velinsky, et al. 2014. Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120(1–3): 1–27.

    Google Scholar 

  • Wickland, K.P., R.G. Striegl, M.A. Mast, and D.W. Clow. 2001. Carbon gas exchange at a southern Rocky Mountain wetland, 1996–1998. Global Biogeochemical Cycles 15(2): 321–335.

    Article  CAS  Google Scholar 

  • Wilson, K., A. Goldstein, E. Falge, et al. 2002. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology 113(1): 223–243.

    Article  Google Scholar 

  • Xu, L., and D.D. Baldocchi. 2004. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agricultural and Forest Meteorology 123(1): 79–96.

    Article  Google Scholar 

  • Zemmelink, H.J., Slagter, H.A., Van Slooten, C., et al. 2009. Primary production and eddy correlation measurements of CO2 exchange over an intertidal estuary. Geophysical research letters, 36(19).

  • Zhong, Q., Q. Du, J. Gong, et al. 2013. Effects of in situ experimental air warming on the soil respiration in a coastal salt marsh reclaimed for agriculture. Plant and Soil 371(1–2): 487–502.

    Article  CAS  Google Scholar 

  • Zhong, Q., J. Gong, K. Wang, et al. 2014. Effects of 3-year air warming on growth of two perennial grasses (Phragmites australis and Imperata cylindrica) in a coastal salt marsh reclaimed for agriculture. Aquatic Botany 117: 18–26.

    Article  Google Scholar 

  • Zhou, L., G. Zhou, and Q. Jia. 2009. Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China. Aquatic Botany 91(2): 91–98.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the members of the Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration in East China Normal University for their assistance with the collection of field data. We are grateful to the members of the Research Center for Saline Fisheries Technology in East China Sea Fisheries Research Institute for their insightful suggestions during the writing of this manuscript. We are also grateful to the three anonymous reviewers and the editors for their valuable comments and suggestions. Thanks are extended to Haiqiang Guo and Bin Zhao of Fudan University for kindly providing the CO2 flux information for the unreclaimed wetland. This project was supported by the basic research fund for central institutes of China (2015 M02) and the 2015 annual open research fund from Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration (SHUES2015A02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qicheng Zhong or Chao Zhang.

Additional information

Communicated by Rui Santos

Qicheng Zhong and Chao Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Q., Wang, K., Lai, Q. et al. Carbon Dioxide Fluxes and Their Environmental Control in a Reclaimed Coastal Wetland in the Yangtze Estuary. Estuaries and Coasts 39, 344–362 (2016). https://doi.org/10.1007/s12237-015-9997-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-015-9997-4

Keywords

Navigation