Skip to main content
Log in

Importance of Mangrove Carbon for Aquatic Food Webs in Wet–Dry Tropical Estuaries

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Mangroves are traditionally considered to provide important nutrition to tropical estuarine consumers. However, there is still controversy about this, and the extent and importance of these inputs are largely unquantified. In particular, there is no information for food webs of small estuaries that dominate wet–dry tropical coasts, where freshwater inflow is intermittent, leading to highly seasonal inputs of nutrients from terrestrial systems. Since the relative importance of the different sources depends on the type and extent of different habitats and on hydrological and topographic conditions, results from other regions/type of systems cannot be extrapolated to these estuaries. Here, δ13C is used to determine the importance of mangrove-derived carbon for Penaeus merguiensis (detritivore; shrimp), Ambassis vachellii (planktivore; fish), and Leiognathus equulus (benthivore; fish) from six small wet–dry tropical estuaries that differ in mangrove (C3) cover and in type of terrestrial vegetation adjacent to the estuary. Bayesian mixing models confirmed that mangrove material was important to consumers in all estuaries. There was a gradient in this importance that agreed with the extent of mangrove forests in the estuaries, as C3 sources were the most important contributors to animals from the three estuaries with the greatest (>40 %) mangrove cover. There was also evidence of incorporation of C3 material for the three estuaries with lower (<30 %) mangrove cover. Since these latter estuaries had no adjacent terrestrial C3 forests, the detected C3 influence can only be of mangrove origin. This shows that mangroves are important contributors to these food webs, underlining the importance of mangroves in supporting estuarine nursery ground value and fisheries productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrantes, K., and M. Sheaves. 2008. Incorporation of terrestrial wetland material into aquatic food webs in a tropical estuarine wetland. Estuarine, Coastal and Shelf Science 80: 401–412.

    Article  Google Scholar 

  • Abrantes, K., and M. Sheaves. 2009a. Food web structure in a near-pristine mangrove area of the Australian Wet Tropics. Estuarine, Coastal and Shelf Science 82: 597–607.

    Article  CAS  Google Scholar 

  • Abrantes, K., and M. Sheaves. 2009b. Sources of nutrition supporting juvenile penaeid prawns in an Australian dry tropics estuary. Marine and Freshwater Research 60: 949–959.

    Article  CAS  Google Scholar 

  • Abrantes, K.G., and M. Sheaves. 2010. Importance of freshwater flow in terrestrial-aquatic energetic connectivity in intermittently connected estuaries of tropical Australia. Marine Biology 157: 2071–2086.

    Article  Google Scholar 

  • Abrantes, K. G, Barnett, A, Marwick, T. R, Bouillon S. 2013. Importance of terrestrial subsidies for estuarine food webs in contrasting east African catchments. Ecosphere 4:Art14

    Google Scholar 

  • Al-Maslamani, I., M. Walton, H. Kennedy, M. Al-Mohannadi, and L. Le Vay. 2013. Are mangroves in arid environments isolated systems? Life-history and evidence of dietary contribution from inwelling in a mangrove-resident shrimp species. Estuarine, Coastal and Shelf Science 124: 56–63.

    Article  Google Scholar 

  • Alongi, D.M. 1988. Bacterial productivity and microbial biomass in tropical mangrove sediments. Microbial Ecology 15: 59–79.

    Article  CAS  Google Scholar 

  • Alongi, D.M. 1994. Zonation and seasonality of benthic primary production and community respiration in tropical mangrove forests. Oecologia 98: 320–327.

    Article  Google Scholar 

  • Alongi, D.M., P. Christoffersen, and F. Tirendi. 1993. The influence of forest type on microbial-nutrient relationships in tropical mangrove sediments. Journal of Experimental Marine Biology and Ecology 171: 201–223.

    Article  Google Scholar 

  • Baker, R., and M. Sheaves. 2009. Refugees or ravenous predators: detecting predation on new recruits to tropical estuarine nurseries. Wetlands Ecology and Management 17: 317–330.

    Article  Google Scholar 

  • Barnes, C., C.J. Sweeting, S. Jennings, J.T. Barry, and N.V.C. Polunin. 2007. Effect of temperature and ration size on carbon and nitrogen stable isotope trophic fractionation. Functional Ecology 21: 356–362.

    Article  Google Scholar 

  • Beck, M.W., K.L. Heck Jr., K.W. Able, D.L. Childers, D.B. Eggleston, B.M. Gillanders, B. Halpern, C.G. Hays, K. Hoshino, T.J. Minello, R.J. Orth, P.F. Sheridan, and M.P. Weinstein. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51: 633–641.

    Article  Google Scholar 

  • Blanchard, G.F., J.-M. Guarini, P. Richard, P. Gros, and F. Mornet. 1996. Quantifying the short-term temperature effect on light-saturated photosynthesis of intertidal microphytobenthos. Marine Ecology Progress Series 134: 309–313.

    Article  Google Scholar 

  • Bond, A.L., and A.W. Diamond. 2011. Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecological Applications 21: 1017–1023.

    Article  Google Scholar 

  • Boon, P.I., F.L. Bird, and S.E. Bunn. 1997. Diet of the intertidal callianassid shrimps Biffarius arenosus and Trypea australiensis (Decapoda:Thalassinidea) in Western Port (southern Australia), determined with multiple stable-isotope analyses. Marine and Freshwater Research 48: 503–511.

    Article  CAS  Google Scholar 

  • Bouillon, S., P.C. Mohan, N. Sreenivas, and F. Dehairs. 2000. Sources of suspended organic matter and selective feeding by zooplankton in an estuarine mangrove ecosystem as traced by stable isotopes. Marine Ecology Progress Series 208: 79–92.

    Article  Google Scholar 

  • Bouillon, S., T. Moens, I. Overmeer, N. Koedam, and F. Dehairs. 2004. Resource utilization patterns of epifauna from mangrove forests with contrasting inputs of local versus imported organic matter. Marine Ecology Progress Series 278: 77–88.

    Article  CAS  Google Scholar 

  • Bouillon, S., J.J. Middelburg, F. Dehairs, A.V. Borges, G. Abril, M.R. Flindt, S. Ulomi, and E. Kristensen. 2007. Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania). Biogeosciences 4: 311–322.

    Article  CAS  Google Scholar 

  • Bouillon, S., R.M. Connolly, and S.Y. Lee. 2008. Organic matter exchange and cycling in mangrove ecosystems: recent insights from stable isotope studies. Journal of Sea Research 59: 44–58.

    Article  CAS  Google Scholar 

  • Bouillon, S., R.M. Connolly, and D.P. Gillikin. 2011. Use of stable isotopes to understand food webs and ecosystem functioning in estuaries. In Treatise on Estuarine and Coastal Science, ed. E. Wolanski and D.S. McLusky. Waltham: Academic Press.

    Google Scholar 

  • Boys, C.A., F.J. Kroon, T.M. Glasby, and K. Wilkinson. 2012. Improved fish and crustacean passage in tidal creeks following floodgate remediation. Journal of Applied Ecology 49: 223–233.

    Article  Google Scholar 

  • Buchheister, A., and R.J. Latour. 2010. Turnover and fractionation of carbon and nitrogen stable isotopes in tissues of a migratory coastal predator, summer flounder (Paralichthys dentatus). Canadian Journal of Fisheries and Aquatic Sciences 67: 445–461.

    Article  CAS  Google Scholar 

  • Caut, S., E. Angulo, and F. Courchamp. 2009. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Animal Ecology 46: 443–453.

    Article  CAS  Google Scholar 

  • Cerling, T.E., J.M. Harris, B.J. MacFadden, M.G. Leakey, J. Quade, V. Eisenmann, and J.R. Ehleringer. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389: 153–158.

    Article  CAS  Google Scholar 

  • Chanton, J., and F.G. Lewis. 2002. Examination of coupling between primary and secondary production in a river-dominated estuary: Apalachicola Bay, Florida, USA. Limnology and Oceanography 47: 683–697.

    Article  Google Scholar 

  • Chong, V.C., C.B. Low, and T. Ichikawa. 2001. Contribution of mangrove detritus to juvenile prawn nutrition: a dual stable isotope study in a Malaysian mangrove forest. Marine Biology 138: 77–86.

    Article  CAS  Google Scholar 

  • Clementz, M.T., and P.L. Koch. 2001. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129: 461–472.

    Article  Google Scholar 

  • Cloern, J.E., E.A. Canuel, and D. Harris. 2002. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnology and Oceanography 47: 713–729.

    Article  CAS  Google Scholar 

  • Clough, B. 1998. Mangrove forest productivity and biomass accumulation in Hinchinbrook Channel, Australia. Mangroves and Salt Marshes 2: 191–198.

    Article  Google Scholar 

  • Cole, J.J., S.R. Carpenter, M.L. Pace, M.C. Van de Bogert, J.L. Kitchell, and J.R. Hodgson. 2006. Differential support of lake food webs by three types of terrestrial organic carbon. Ecology Letters 9: 558–568.

    Article  Google Scholar 

  • Dahlgren, C.P., G. Kellison, A.J. Adams, B.M. Gillanders, M.S. Kendall, C.A. Layman, J.A. Ley, I. Nagelkerken, and J.E. Serafy. 2006. Marine nurseries and effective juvenile habitats: concepts and applications. Marine Ecology Progress Series 312: 291–295.

    Article  Google Scholar 

  • De’ath, G., and K.E. Fabricius. 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81: 3178–3192.

    Article  Google Scholar 

  • DeNiro, M.J., and S. Epstein. 1978. Influence of diet in the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495–506.

    Article  CAS  Google Scholar 

  • Elsdon, T.S., S. Ayvazian, K.W. McMahon, and S.R. Thorrold. 2010. Experimental evaluation of stable isotope fractionation in fish muscle and otoliths. Marine Ecology Progress Series 408: 195–205.

    Article  CAS  Google Scholar 

  • Erskine, W.D., M.J. Saynor, L. Erskine, K.G. Evans, and D.R. Moliere. 2005. A preliminary typology of Australian tropical rivers and implications for fish community ecology. Marine and Freshwater Research 56: 253–267.

    Article  Google Scholar 

  • Finlayson, B., and T. McMahon. 1988. Australia vs the world: a comparative analysis of streamflow characteristics. In Fluvial Geomorphology of Australia, ed. R. Werner. Sydney: Academic Press.

    Google Scholar 

  • France, R.L. 1996. Scope for use of stable carbon isotopes in discerning the incorporation of forest detritus into aquatic foodwebs. Hydrobiologia 325: 219–222.

    Article  CAS  Google Scholar 

  • Fry, B. 1981. Natural stable carbon isotope tag traces Texas shrimp migrations. Fishery Bulletin 79: 337–345.

    Google Scholar 

  • Fry, B. 2002. Conservative mixing of stable isotopes across estuarine salinity gradients: a conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25: 264–271.

    Article  Google Scholar 

  • Fry, B., and K.C. Ewel. 2003. Using stable isotopes in mangrove fisheries research—a review and outlook. Isotopes in Environmental and Health Studies 39: 191–196.

    Article  CAS  Google Scholar 

  • Giarrizzo, T., R. Schwamborn, and U. Saint-Paul. 2011. Utilization of carbon sources in a northern Brazilian mangrove ecosystem. Estuarine Coastal and Shelf Science 95: 447–457.

    Google Scholar 

  • Gillikin, D.P., A. Lorrain, S. Bouillon, P. Willenz, and F. Dehairs. 2006. Stable carbon isotopic composition of Mytilus edulis shells: relation to metabolism, salinity, δ13C-DIC and phytoplankton. Organic Geochemistry 37: 1371–1382.

    Article  CAS  Google Scholar 

  • Gorokhova, E., and S. Hansson. 1999. An experimental study on variations in stable carbon and nitrogen fractionation during growth of Mysis mixta and Neomysis integer. Canadian Journal of Fisheries and Aquatic Sciences 56: 2203–2210.

    Article  Google Scholar 

  • Guelinckx, J., J. Maes, P. van den Driessche, B. Geysen, F. Dehairs, and F. Ollevier. 2007. Changes in δ13C and δ15N in different tissues of juvenile sand goby Pomatoschistus minutus: a laboratory diet-switch experiment. Marine Ecology Progress Series 341: 205–215.

    Article  CAS  Google Scholar 

  • Guest, M., R.M. Connolly, and N. Loneragan. 2004. Within and among-site variability in δ13C and δ15N for three estuarine producers, Sporobolus virginicus, Zostera capricorni, and epiphytes of Z. capricorni. Aquatic Botany 79: 87–94.

    Article  CAS  Google Scholar 

  • Haywood, M.D.E., and D.J. Staples. 1993. Field estimates of growth and mortality of juvenile banana prawns (Penaeus merguiensis). Marine Biology 116: 407–416.

    Article  Google Scholar 

  • Heithaus, E.R., P.A. Heithaus, M.R. Heithaus, D. Burkholder, and C.A. Layman. 2011. Trophic dynamics in a relatively pristine subtropical fringing mangrove community. Marine Ecology Progress Series 428: 49–61.

    Article  Google Scholar 

  • Hemminga, M.A., and M.A. Mateo. 1996. Stable carbon isotopes in seagrasses: variability in ratios and use in ecological studies. Marine Ecology Progress Series 140: 285–298.

    Google Scholar 

  • Hoover, R.S., D. Hoover, M. Miller, M.R. Landry, E.H. DeCarlo, and F.T. Mackenzie. 2006. Zooplankton response to storm runoff in a tropical estuary: bottom-up and top-down controls. Marine Ecology Progress Series 318: 187–201.

    Article  CAS  Google Scholar 

  • Igulu, M., I. Nagelkerken, G. van der Velde, and Y. Mgaya. 2013. Mangrove fish production is largely fuelled by external food sources: a stable isotope analysis of fishes at the individual, species, and community levels from across the globe. Ecosystems 16: 1336–1352.

    Article  CAS  Google Scholar 

  • Jennerjahn, T.C., and V. Ittekkot. 2002. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89: 23–30.

    Article  Google Scholar 

  • Kristensen, E., S. Bouillon, T. Dittmar, and C. Marchand. 2008. Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany 89: 201–219.

    Article  CAS  Google Scholar 

  • Lancaster, J., and S. Waldron. 2001. Stable isotope values of lotic invertebrates: sources of variation, experimental design, and statistical interpretation. Limnology and Oceanography 46: 723–730.

    Article  Google Scholar 

  • Layman, C.A. 2007. What can stable isotope ratio reveal about mangroves as fish habitat? Bulletin of Marine Science 80: 513–527.

    Google Scholar 

  • Lin, H.-J., W.-Y. Kao, and Y.-T. Wang. 2007. Analyses of stomach contents and stable isotopes reveal food sources of estuarine detritivorous fish in tropical/subtropical Taiwan. Estuarine, Coastal and Shelf Science 73: 527–537.

    Article  Google Scholar 

  • Loneragan, N.R., S.E. Bunn, and D.M. Kellaway. 1997. Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study. Marine Biology 130: 289–300.

    Article  Google Scholar 

  • Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B.C. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806–1809.

    Article  CAS  Google Scholar 

  • Maher, D.T., I.R. Santos, L. Golsby-Smith, J. Gleeson, and B.D. Eyre. 2013. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink? Limnology and Oceanography 58: 475–488.

    CAS  Google Scholar 

  • Marczak, L.B., R.M. Thompson, and J.S. Richardson. 2007. Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies. Ecology 88: 140–148.

    Article  Google Scholar 

  • Mavuti, K.M., J.A. Nyunja, and E.O. Wakwabi. 2007. Trophic ecology of some common juvenile fish species in Mtwapa Creek, Kenya. West Indian Ocean Journal of Marine Science 3: 179–188.

    Google Scholar 

  • Mazumder, D., R.J. Williams, D. Reir, N. Saintilan, and R. Szymczak. 2008. Variability of stable isotope ratios of glassfish (Ambassis jacksoniensis) from mangrove/saltmarsh environments in southeast Australia and emplications for choosing sample size. Environmental Bioindicators 3: 114–123.

    Article  Google Scholar 

  • McCutchan, J.H., W.M. Lewis Jr., C. Kendall, and C.C. McGrath. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen and sulfur. Oikos 102: 378–390.

    Article  CAS  Google Scholar 

  • Nagelkerken, I., and G. van der Velde. 2004. Are Caribbean mangroves important feeding grounds for juvenile reef fish from adjacent seagrass beds? Marine Ecology Progress Series 274: 143–151.

    Article  Google Scholar 

  • Newell, R.I.E., N. Marshall, A. Sasekumar, and V.C. Chong. 1995. Relative importance of benthic microalgae, phytoplankton, and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates from Malaysia. Marine Biology 123: 595–606.

    Article  Google Scholar 

  • Nyunja, J., M. Ntiba, J. Onyari, K. Mavuti, K. Soetaert, and S. Bouillon. 2009. Carbon sources supporting a diverse fish community in a tropical coastal ecosystem (Gazi Bay, Kenya). Estuarine, Coastal and Shelf Science 83: 333–341.

    Article  CAS  Google Scholar 

  • Parnell, A.C., R. Inger, S. Bearhop, and A.L. Jackson. 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5: e9672.

    Article  Google Scholar 

  • Peel, M.C., B.L. Finlayson, and T.A. McMahon. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions 4: 439–473.

    Article  Google Scholar 

  • Peterson, B.J., R.W. Howarth, and R.H. Garritt. 1986. Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow. Ecology 67: 865–874.

    Article  CAS  Google Scholar 

  • Polis, G.A., W.B. Anderson, and R.D. Holt. 1997. Towards an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.

    Article  Google Scholar 

  • Post, D.M. 2002. Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Post, D.M., C.A. Layman, D.A. Arrington, G. Takimoto, J. Quattrochi, and C.G. Montanã. 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179–189.

    Article  Google Scholar 

  • Ridd, P.V., and T. Stieglitz. 2002. Dry season salinity changes in arid estuaries fringed by mangroves and saltflats. Estuarine, Coastal and Shelf Science 54: 1039–1049.

    Article  CAS  Google Scholar 

  • Ridd, P., R. Sam, S. Hollins, and G. Brunskill. 1997. Water, salt and nutrient fluxes of tropical tidal salt flats. Mangroves and Salt Marshes 1: 229–238.

    Article  Google Scholar 

  • Robertson, A.I. 1988. Abundance, diet and predators of juvenile banana prawns, Penaeus merguiensis, in a tropical mangrove estuary. Australian Journal of Marine & Freshwater Research 39: 467–478.

    Article  Google Scholar 

  • Robertson, A.I., and S.J.M. Blaber. 1992. Plankton, epibenthos and fish communities. In Tropical Mangrove Ecossystems, Book 41, ed. A.I. Robertson and D.M. Alongi. Washington, DC: American Geophysical Union.

    Chapter  Google Scholar 

  • Robertson, A.I., and N.C. Duke. 1990. Recruitment, growth and residence time of fishes in a tropical Australian mangrove system. Estuarine, Coastal and Shelf Science 31: 723–743.

    Article  Google Scholar 

  • Robertson, A.I., P. Dixon, and P.A. Daniel. 1988. Zooplankton dynamics in mangrove and other nearshore habitats in tropical Australia. Marine Ecology Progress Series 43: 139–150.

    Article  Google Scholar 

  • Rodelli, M.R., J.N. Gearing, P.J. Gearing, N. Marshall, and A. Sasekumar. 1984. Stable isotope ratio as a tracer of mangrove carbon in Malaysian ecosystems. Oecologia 61: 326–333.

    Article  Google Scholar 

  • Schlacher, T.A., A.J. Skillington, R.M. Connolly, W. Robinson, and T.F. Gaston. 2008. Coupling between marine plankton and freshwater flow in the plumes off a small estuary. International Review of Hydrobiology 93: 641–658.

    Article  CAS  Google Scholar 

  • Schlacher, T.A., R.M. Connolly, A.J. Skillington, and T.F. Gaston. 2009. Can export of organic matter from estuaries support zooplankton in nearshore, marine plumes? Aquatic Ecology 43: 383–393.

    Article  CAS  Google Scholar 

  • Sheaves, M. 1996. Do spatial differences in the abundance of two serranid fishes in estuaries of tropical australia reflect long-term salinity patterns? Marine Ecology Progress Series 137: 39–49.

    Article  Google Scholar 

  • Sheaves, M., and R. Johnston. 2009. Ecological drivers of spatial variability among fish fauna of 21 tropical Australian estuaries. Marine Ecology Progress Series 385: 245–260.

    Article  Google Scholar 

  • Sheaves, M., and R. Johnston. 2010. Implications of spatial variability of fish assemblages for monitoring of Australia’s tropical estuaries. Aquatic Conservation: Marine and Freshwater Ecosystems 20: 348–356.

    Article  Google Scholar 

  • Sheaves, M., and B. Molony. 2000. Short-circuit in the mangrove food chain. Marine Ecology Progress Series 199: 97–109.

    Article  Google Scholar 

  • Sheaves, M., R. Johnston, and R. Connolly. 2010. Temporal dynamics of fish assemblages of natural and artificial tropical estuaries. Marine Ecology Progress Series 410: 143–157.

    Article  Google Scholar 

  • Sheaves, M., R. Johnston, and R.M. Connolly. 2012. Fish assemblages as indicators of estuary ecosystem health. Wetlands Ecology and Management 20: 477–490.

    Article  Google Scholar 

  • Sheaves, M., R. Johnston, A. Johnson, R. Baker, and R. Connolly. 2013. Nursery function drives temporal patterns in fish assemblage structure in four tropical estuaries. Estuaries and Coasts 36: 893–905.

    Article  Google Scholar 

  • Sheaves, M., J. Brookes, R. Coles, M. Freckelton, P. Groves, R. Johnston, and P. Winberg. 2014. Repair and revitalisation of Australia's tropical estuaries and coastal wetlands: opportunities and constraints for the reinstatement of lost function and productivity. Marine Policy 47: 23–38.

    Article  Google Scholar 

  • Suring, E., and S.R. Wing. 2009. Isotopic turnover rate and fractionation in multiple tissues of red rock lobster (Jasus edwardsii) and blue cod (Parapercis colias): consequences for ecological studies. Journal of Experimental Marine Biology and Ecology 370: 56–63.

    Article  CAS  Google Scholar 

  • Vance, D.J., M.D.E. Haywood, D.S. Heales, R.A. Kenyon, N.R. Loneragan, and R.C. Pendrey. 1996. How far do prawns and fish move into mangroves? Distribution of juvenile banana prawns Penaeus merguiensis and fish in a tropical mangrove forest in northern Australia. Marine Ecology Progress Series 131: 115–124.

    Article  Google Scholar 

  • Vander Zanden, M.J., and J.B. Rasmussen. 2001. Variation in δ15N and δ13C trophic fractionation: implication for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.

    Article  CAS  Google Scholar 

  • Vaslet, A., D.L. Phillips, C. France, I.C. Feller, and C.C. Baldwin. 2012. The relative importance of mangroves and seagrass beds as feeding areas for resident and transient fishes among different mangrove habitats in Florida and Belize: evidence from dietary and stable-isotope analyses. Journal of Experimental Marine Biology and Ecology 434–435: 81–93.

    Article  Google Scholar 

  • Wai, T.-C., J.S. Ng, K.M. Leung, D. Dudgeon, and G.A. Williams. 2008. The source and fate of organic matter and the significance of detrital pathways in a tropical coastal ecosystem. Limnology and Oceanography 53: 1479–1492.

    Article  CAS  Google Scholar 

  • Wai, T.-C., K.M.Y. Leung, S.Y.T. Sin, A. Cornish, D. Dudgeon, and G.A. Williamsa. 2011. Spatial, seasonal, and ontogenetic variations in the significance of detrital pathways and terrestrial carbon for a benthic shark, Chiloscyllium plagiosum (Hemiscylliidae), in a tropical estuary. Limnology and Oceanography 56: 1035–1053.

    Article  CAS  Google Scholar 

  • Weidel, B.C., S.R. Carpenter, J.F. Kitchell, and M.J. Vander Zanden. 2011. Rates and components of carbon turnover in fish muscle: insights from bioenergetics models and a whole-lake 13C addition. Canadian Journal of Fisheries and Aquatic Sciences 68: 387–399.

    Article  CAS  Google Scholar 

  • Wilson, J.P., and M. Sheaves. 2001. Short-term temporal variations in taxonomic composition and trophic structure of a tropical estuarine fish assemblage. Marine Biology 139: 787–796.

    Article  Google Scholar 

  • Yokoyama, H., A. Tamaki, K. Harada, K. Shimoda, K. Koyama, and Y. Ishihi. 2005. Variability of diet-tissue isotopic fractionation in estuarine macrobenthos. Marine Ecology Progress Series 296: 115–128.

    Article  CAS  Google Scholar 

  • Zagars, M., K. Ikejima, A. Kasai, N. Arai, and P. Tongnunui. 2013. Trophic characteristics of a mangrove fish community in Southwest Thailand: Important mangrove contribution and intraspecies feeding variability. Estuarine Coastal and Shelf Science 119: 145–152.

    Google Scholar 

Download references

Acknowledgments

We thank the many volunteers, in particular A. Johnson for field assistance. This research was supported by an Australian Government Marine and Tropical Sciences Research Facility (MTSRF) grant to MS and RMC, and by a Winifred Violet Scott Foundation grant to KGA. Work was conducted in accordance with institutional, national, and international guidelines concerning the use of animals in research, under the Ethics Permit A1210 from James Cook University. We also thank the anonymous reviewers for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kátya G. Abrantes.

Additional information

Communicated by Alberto Vieira Borges

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 287 kb)

ESM 2

(DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrantes, K.G., Johnston, R., Connolly, R.M. et al. Importance of Mangrove Carbon for Aquatic Food Webs in Wet–Dry Tropical Estuaries. Estuaries and Coasts 38, 383–399 (2015). https://doi.org/10.1007/s12237-014-9817-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9817-2

Keywords

Navigation