Skip to main content
Log in

Priming Potato with Thiamin to Control Potato Virus Y

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Potato virus Y (PVY) is a major potato pathogen affecting potato yields worldwide. Thiamin, a water-soluble B vitamin (vitamin B1) has been shown to boost the plant’s immunity, thereby increasing resistance against pathogens. In this study, we tested different concentrations of thiamin (1 mM, 10 mM, 50 mM, 100 mM) and multiple thiamin applications (once, biweekly and monthly) on potato resistance to PVY in Ranger Russet potatoes. Plants were mechanically inoculated with PVYN:O. This PVY strain is known for causing well-defined foliar symptoms. We collected leaflets weekly through April and May 2015 and tested them with an enzyme-linked immunosorbent assay specific to PVY as well as by real time quantitative RT-PCR. These assays allowed us to determine the presence and level of PVY in different parts of the plants. We found that the highest thiamin concentration treatment (100 mM) produced the lowest virus level in potatoes across all dates and leaflet samples. Also, it was found that multiple applications of thiamin had a positive effect on reducing virus level, especially when thiamin was applied every four weeks.

Resumen

El Virus Y de la Papa (PVY) es un patógeno importante que afecta los rendimientos de la papa mundialmente. Se ha demostrado que la tiamina, una vitamina B soluble en agua (vitamina B1), estimula la inmunidad de la planta, aumentando la resistencia contra patógenos. En este estudio, probamos diferentes concentraciones de tiamina (1 mM, 10 mM, 50 mM, 100 mM) y aplicaciones múltiples (una vez, quincenalmente y mensualmente) sobre la resistencia de la papa al PVY en la variedad Ranger Russet. Las plantas se inocularon mecánicamente con PVYN:O. Esta variante es conocida por causar síntomas foliares bien definidos. Colectamos folíolos semanalmente durante abril y mayo, 2015, y los probamos con un ensayo serológico de enzimas conjugadas específico para PVY, así como con PCR-RT de tiempo real cuantitativo. Estos ensayos nos permitieron determinar la presencia y nivel de PVY en diferentes partes de la planta. Encontramos que el tratamiento con la más alta concentración de tiamina (100 mM) produjo el más bajo nivel de virus en papa a lo largo de todas las fechas y muestras de folíolos. También se encontró que múltiples aplicaciones de tiamina tuvieron un efecto positivo en la reducción del nivel del virus, especialmente cuando la tiamina se aplicó cada cuatro semanas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn, I.P., S. Kim, and Y.H. Lee. 2005. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiology 138: 1505–1515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn, I.P., S. Kim, Y.H. Lee, and S.C. Suh. 2007. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiology 143: 838–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahuguna, R.N., R. Joshi, A. Shukla, M. Pandey, and J. Kumar. 2012. Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.). Plant Physiology and Biochemistry 57: 159–167.

    Article  CAS  PubMed  Google Scholar 

  • Beckers, G.J., and U. Conrath. 2007. Priming for stress resistance: from the lab to the field. Current Opinion in Plant Biology 10: 425–431.

    Article  PubMed  Google Scholar 

  • Boubakri, H., M.A. Wahab, J.L. Chong, C. Bertsch, A. Mliki, and I. Soustre-Gacougnolle. 2012. Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses, including HR like-cell death. Plant Physiology and Biochemistry 57: 120–133.

    Article  CAS  PubMed  Google Scholar 

  • Boubakri, H., A. Poutaraud, M.A. Wahab, C. Clayeux, R. Baltenweck-Guyot, D. Steyer, C. Marcic, A. Mliki, and I. Soustre-Gacougnolle. 2013. Thiamine modulates metabolism of the phenylpropanoid pathway leading to enhanced resistance to Plasmopara viticola in grapevine. BMC Plant Biology 13.

  • Conrath, U. 2009. Priming of induced plant defense responses. In Plant innate immunity, ed. L.C. VanLoon, vol. 51, 361–395. London: Academic Press Ltd-Elsevier Science Ltd.

    Google Scholar 

  • Conrath, U., C.M. Pieterse, and B. Mauch-Mani. 2002. Priming in plant-pathogen interactions. Trends in Plant Science 7: 210–216.

    Article  CAS  PubMed  Google Scholar 

  • Conrath, U., G.J.M. Beckers, C.J.G. Langenbach, and M.R. Jaskiewicz. 2015. Priming for enhanced defense. In Annual review of phytopathology, ed. N.K. VanAlfen, vol. 53, 97–119. Palo Alto: Annual Reviews.

    Google Scholar 

  • Du, Z.Y., J.S. Chen, and C. Hiruki. 2006. Optimization and application of a multiplex RT-PCR system for simultaneous detection of five potato viruses using 18S rRNA as an internal control. Plant Disease 90: 185–189.

    Article  CAS  Google Scholar 

  • Goyer, A., L. Hamlin, J. M. Crosslin, A. Buchanan and J. H. Chang. 2015. RNA-Seq analysis of resistant and susceptible potato varieties during the early stages of Potato Virus Y infection. BMC Genomics 16: 472.

  • Hamada, A.M., and L.M.V. Jonsson. 2013. Thiamine treatments alleviate aphid infestations in barley and pea. Phytochemistry 94: 135–141.

    Article  CAS  PubMed  Google Scholar 

  • Karasev, A.V., and S.M. Gray. 2013a. Continuous and emerging challenges of potato virus Y in potato. Annual Review of Phytopathology 51: 571–586.

    Article  CAS  PubMed  Google Scholar 

  • Karasev, A.V., and S.M. Gray. 2013b. Genetic diversity of potato virus Y complex. American Journal of Potato Research 90: 7–13.

    Article  CAS  Google Scholar 

  • Kogovsek, P., A. Kladnik, J. Mlakar, M.T. Znidaric, M. Dermastia, M. Ravnikar, and M. Pompe-Novak. 2011. Distribution of potato virus Y in potato plant organs, tissues, and cells. Phytopathology 101: 1292–1300.

    Article  CAS  PubMed  Google Scholar 

  • Nanayakkara, U.N., X. Nie, M. Giguere, J. Zhang, S. Boquel, and Y. Pelletier. 2012. Aphid feeding behavior in relation to potato virus Y (PVY) acquisition. Journal of Economic Entomology 105: 1903–1908.

    Article  CAS  PubMed  Google Scholar 

  • Nie, B.H., M. Singh, A. Murphy, A. Sullivan, C.H. Xie, and X.Z. Nie. 2012. Response of potato cultivars to five isolates belonging to four strains of potato virus Y. Plant Disease 96: 1422–1429.

    Article  CAS  Google Scholar 

  • Nishimura, H., Y. Uehara, K. Sempuku, and A. Iwashima. 1984. Purification and some properties of thiamine-binding protein from rice bran. Journal of Nutritional Science and Vitaminology 30: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Rajamaki, M.L., and J.P.T. Valkonen. 2002. Viral genome-linked protein (VPg) controls accumulation and phloem-loading of a potyvirus in inoculated potato leaves. Molecular Plant - Microbe Interactions 15: 138–149.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, A.G., S.S. Cruz, I.M. Roberts, D.A.M. Prior, R. Turgeon, and K.J. Oparka. 1997. Phloem unloading in sink leaves of Nicotiana Benthamiana: comparison of a fluorescent solute with a fluorescent virus. Plant Cell 9: 1381–1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley, J.S., S.M. Gray, and A.V. Karasev. 2014. Screening potato cultivars for new sources of resistance to Potato virus Y. American Journal of Potato Research 92: 38–48.

  • Schmittgen, T.D., and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative C-T method. Nature Protocols 3: 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  • Szajko, K., D. Strzelczyk-Zyta, and W. Marczewski. 2014. Ny-1 and Ny-2 genes conferring hypersensitive response to potato virus Y (PVY) in cultivated potatoes: mapping and marker-assisted selection validation for PVY resistance in potato breeding. Molecular Breeding 34: 267–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunc-Ozdemir, M., G. Miller, L. Song, J. Kim, A. Sodek, S. Koussevitzky, A.N. Misra, R. Mittler, and D. Shintani. 2009. Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiology 151: 421–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., A.Z. Sun, and D. Xing. 2013. Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum. Journal of Experimental Botany 64: 3261–3272.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Oregon State University Agricultural Research Foundation for funding part of this trial. We would also like to thank Matthew Warman for his help during PVY inoculation and ELISA testings, and Mark Barnett for his technical help with the real-time quantitative RT-PCR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymeric Goyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinchesi, A.C., Rondon, S.I. & Goyer, A. Priming Potato with Thiamin to Control Potato Virus Y. Am. J. Potato Res. 94, 120–128 (2017). https://doi.org/10.1007/s12230-016-9552-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-016-9552-2

Keywords

Navigation