Skip to main content

Advertisement

Log in

Water Regimes and Humic Acid Application Influences Potato Growth, Yield, Tuber Quality and Water Use Efficiency

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

This study assessed effects of irrigation water regimes and humic acid (HA) application on vegetative growth, yield, tuber quality and water use efficiency (WUE) of potato. Five irrigation treatments were applied at three developmental stages; (WR1) control (100 % crop evapotranspiration, 100 % ETc) at all plant growth, (WR2) 75 % ETc at all stages, (WR3) 75 % ETc at stage S1 (vegetative growth), (WR4) 75 % ETc at stage S2 (tuber initiation), and (WR5) 75 % ETc at stage S3 (tuber bulking). HA was applied at a rate of 1.5 g L−1 30 day after seed pieces planting. Plants experiencing water stress at S1 were shorter with fewer branches and lower fresh and dry vine weights. Water stress imposed at S2 significantly reduced tuber number, size, and yield. HA application increased vegetative growth, tuber weight, yield, WUE, and tuber quality (specific gravity and starch content). Thus, applying 1.5 g L−1 HA during vegetative growth and a 75 % ET water regime at S3 can increase potato production and tuber quality while reducing water use.

Resumen

En este estudio se evaluaron los efectos de los regímenes de agua de riego y la aplicación del ácido húmico (HA) en el crecimiento de la planta, rendimiento, calidad de tubérculo y la eficiencia del uso del agua (WUE) de la papa. Se aplicaron cinco tratamientos de riego en tres estados de desarrollo; (WR1) testigo (100 % evapotranspiración del cultivo, 100 % ETc) a todo el crecimiento vegetativo, (WR2) 75 % ETc en todas las etapas, (WR3) 75 % ETc en la etapa S1 (crecimiento vegetativo), (WR4) 75 % ETc en la etapa S2 (iniciación de tubérculo), y (WR5) 75 % ETc en la etapa S3 (llenado de tubérculo). Se aplicó HA a un nivel de 1.5 g*L-1 30 días después de la siembra de las unidades de semilla. Las plantas que experimentaron agobio hídrico en S1 fueron más cortas con menos ramas y pesos más bajos fresco y seco del follaje. El agobio hídrico impuesto en S2 redujo significativamente el número de tubérculos, el tamaño y el rendimiento. La aplicación de HA aumentó el crecimiento vegetativo, el peso de tubérculo, el rendimiento, WUE, y la calidad del tubérculo (gravedad específica y contenido de almidón). De aquí que la aplicación de 1.5 g*L-1 de HA durante el crecimiento vegetativo y un régimen de agua de 75 % de ET en S3 puede aumentar la producción de papa y la calidad del tubérculo mientras se reduce el uso del agua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Mawgoud, A.M.R., N.H. El-Greadly, Y.I. Helmy, and S.M. Singer. 2007. Responses of tomato plants to different rates of humic-based fertilizer and NPK fertilization. Journal of Applied Sciences Research 3(2): 169–174.

  • Abu-Zinada, I.A., and K.S. Sekh-Eleid. 2015. Humic acid to decrease fertilization rate on potato (Solanum tuberosum L.). American Journal of Agriculture and Forestry 3(5): 234–238.

    Article  Google Scholar 

  • Ali, G. 2014. Study of the influence of water stress on growth and development of crop plants. International Journal of Pharmaceutical Sciences Review and Research 1: 28–32.

    Google Scholar 

  • Allen, R., L. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. UN-FAO, Rome, Italy.

  • Alva, A.K. 2008. Water management and water uptake efficiency by potatoes: a review. Archives of Agronomy and Soil Science 54(1): 53–68.

    Article  CAS  Google Scholar 

  • Association of Official Agricultural Chemists (AOAC). 2000. Official Methods of Analysis. 12th ED. Washington, D. C., USA.

  • Ayas, S. 2013. The effects of different regimes on potato (Solanum tuberosum L. Hermes) yield and quality characteristics under unheated greenhouse conditions. Bulgarian Journal of Agricultural Science 19: 87–95.

    Google Scholar 

  • Ayas, S., and A. Korukçu. 2010. Water-yield relationships in deficit irrigated potato. U. Ü. ZİRAAT FAKÜLTESİ DERGİSİ. Journal of Agricultural Faculty of Uludag University Cilt 24, Sayi 2: 23–36.

  • Belanger, G., J.R. Walsh, J.E. Richards, R.H. Milburn, and N. Ziadi. 2002. Nitrogen fertilization and irrigation affects tuber characteristics of two potato cultivars. American Journal of Potato Research 79: 269–279.

    Article  Google Scholar 

  • Bethke, P.C., R. Sabba, and A.J. Bussan. 2009. Tuber water and pressure potentials decrease and sucrose contents increase in response to moderate drought and heat stress. American Journal of Potato Research 86: 519–532.

    Article  Google Scholar 

  • Calvo, P., L. Nelson, and J. Kloepper. 2014. Agricultural uses of plant biostimulants. Plant and Soil 383: 3–41.

    Article  CAS  Google Scholar 

  • Cantore, V., F. Wassarb, S. Yamaçb, M.H. Sellamic, R. Albrizioc, A.M. Stellaccid, and M. Todorovic. 2014. Yield and water use efficiency of early potato grown under different irrigation regimes. International Journal of Plant Production 8: 409–428.

    Google Scholar 

  • Carli, C., F. Yuldashev, D. Khalikov, B. Condori, V. Mares, and P. Monneveux. 2014. Effect of different irrigation regimes on yield, water use efficiency and quality of potato (Solanum tuberosum L.) in the lowlands of Tashkent, Uzbekistan: a field and modeling perspective. Field Crops Research 163: 90–99.

    Article  Google Scholar 

  • Chapman, H. D., and P. F. Pratt. 1978. Methods of Analysis for Soils, Plant and Water. University of California Division of Agriculture Science, California, Priced Pub. 4034.

  • Chen, Y., and T. Aviad. 1990. Effect of humic substances on plant growth. In: Y. Chen and T. Aviad (eds), p. 161–186. Humic substances in soil and crop sciences. American Society of Agronomy and Soil Science of America, Madison. Wis.

  • Doorenbos, J., and A. Kassam. 1979. Yield response to water. Irrigation and drainage paper 33. Rome: Food and Agriculture Organization of the United Nations (FAO).

    Google Scholar 

  • Doorenbos, J., and W.O. Pruitt. 1977. Crop water requirements irrigation and drainage, 24. Rome: Food and Agricultural Organization of the United Nations.

    Google Scholar 

  • Dursun, A., İ. Guvenc, and M. Turan. 2002. Effects of different levels of humic acid on seedling growth and macro and micronutrient contents of tomato and eggplant. Acta Agrobotanica 56: 81–88.

    Google Scholar 

  • Eldredge, E.P., Z.A. Holmes, A.R. Mosley, C.C. Shock, and T.D. Steiber. 1996. Effects of transitory water stress on potato tuber stem-end reducing sugar and fry color. American Potato Journal 73: 517–530.

    Article  Google Scholar 

  • El Dsouky, G.A., and M.A.M. El Sagan. 2015. Growth and productivity improvement of some potato cultivars under Siwa Oasis conditions. IOSR Journal of Agriculture and Veterinary Science 8(9): 82–90.

    Google Scholar 

  • Esendal, E. 1990. Starch Sugar Crops Breeding, Vol. I: Potato. OMU, Agriculture Faculty Publication, No: 101.

  • Fabeiro, C., F. Martin de Santa Olalla, and J.A. de Juan. 2001. Yield and size of deficit irrigated potatoes. Agricultural Water Management 48: 255–266.

    Article  Google Scholar 

  • Feleafel, M.N., and Z.M. Mirdad. 2014. Ameliorating tomato productivity and water-use efficiency under water salinity. The Journal of Animal and Plant Sciences 24: 302–309.

    Google Scholar 

  • Garcia, M.V., F.S. Estrella, M. Lopes, and J. Moreno. 2008. Influence of compost amendment on soil biological properties and plants. Dynamic soil, Dynamic Plant 1: 1–9.

    Google Scholar 

  • Ghannad, M., S. Ashraf, and Z.T. Alipour. 2014. Enhancing yield and quality of potato (Solanum tuberosum L.) tuber using an integrated fertilizer management. International Journal of Agriculture and Crop Sciences 7: 742–748.

    Google Scholar 

  • Gunel, E., and T. Karadogan. 1998. Effect of irrigation applied at different growth stages and length of irrigation period on quality characters of potato tubers. Potato Research 41: 9–19.

    Article  Google Scholar 

  • Hassan, A.A., A.A. Sarkar, M.H. Ali, and N.N. Karim. 2002. Effect of deficit irrigation at different growth stages on the yield of potato. Pakistan Journal of Biological Sciences 5: 128–134.

    Article  Google Scholar 

  • Havaerkort, A.J., M. van de Waart, and K.A. Bodlaender. 1990. The effect of early drought stress on numbers of tubers and stolons of potato in controlled and field conditions. Potato Research 33: 89–96.

    Article  Google Scholar 

  • Hopkins, B., and J. Stark. 2003. Humic acid effects on potato response to phosphorus. In: Robertson LD et al. (eds). Proceedings of Winter Commodity Schools 35: 87–92.

  • Kahlon, M.S., and K.L. Khera. 2015. Irrigation water productivity and potato (Solanum tuberosum L.) yield in different planting methods under mulch conditions. Journal of Agriculture and Ecology Research International 3(3): 107–112.

    Article  Google Scholar 

  • Karam, F., N. Amacha, S. Fahed, T.E.L. Asmar, and A. Domínguez. 2014. Response of potato to full and deficit irrigation under semiarid climate: agronomic and economic implications. Agricultural Water Management 142: 144–151.

    Article  Google Scholar 

  • Karam, F., R. Lahoud, R. Masaad, C. Stephan, Y. Rouphael, and G. Colla. 2005. Yield and tuber quality of potassium treated potato under optimum irrigation conditions. Acta Horticulturae 684: 103–108.

    Article  Google Scholar 

  • Khakbazan, M., C. Hamilton, R. Mohr, and C. Grant. 2011. Water and nutrient crop sufficiency models for potato, wheat, canola, alfalfa, and corn. The American Journal of Plant Science and Biotechnology 5(2): 45–60.

    Google Scholar 

  • King, B., J. Stark, and S. Love. 2003. Potato production with limited water supplies. The Idaho Potato Conference on January 22: 2003.

    Google Scholar 

  • Kirnak, H., I. Tas, C. Kaya, and D. Higgs. 2002. Effects of deficit irrigation on growth, yield, and fruit quality of eggplant under semi-arid conditions. Australian Journal of Agricultural Research 53: 1367–1373.

    Article  Google Scholar 

  • Mahmoud, A.R., and M.M. Hafez. 2010. Increasing productivity of potato plants (Solanum tubersoum L.) by using potassium fertilizer and humic acid application. International Journal of Academic Research 2: 83–88.

    Google Scholar 

  • Miller, D.E., and M.W. Martin. 1987. Effect of declining or interrupted irrigation on yield and quality of three potato cultivars grown on sandy soil. American Potato Journal 64: 109–117.

    Article  Google Scholar 

  • Moghadam, H.T., M.K. Khamene, and H. Zahedi. 2014. Effect of humic acid foliar application on growth and quantity of corn in irrigation withholding at different growth stages. Maydica 59: 124–128.

    Google Scholar 

  • Pavlista, A.D. 2015. Scheduling reduced irrigation on ‘Atlantic’ potato for minimal effect. American Journal of Potato Research 92: 1–11.

    Article  Google Scholar 

  • Piccolo, A., G. Pietramellara, and J.S.C. Mbagwu. 1996. Effects of coal derived humic substances on water retention and structural stability of Mediterranean soils. Soil Use and Management 12(4): 209–213.

    Article  Google Scholar 

  • Qin, S., L. Li, D. Wang, J. Zhang, and Y. Pu. 2013. Effects of limited supplemental irrigation with catchment rainfall on rain-fed potato in semi-arid areas on the Western Loess Plateau, China. American Journal of Potato Research 90: 33–42.

    Article  Google Scholar 

  • Quezada, C., S. Fischer, J. Campos, and D. Ardiles. 2011. Water requirement and water use efficiency of carrot under drip irrigation in a Haploxerand soil. Journal of Soil Science and Plant Nutrition 11: 16–28.

    Article  Google Scholar 

  • Rizk, F.A., A.M. Shaheen, S.M. Singer, and O.A. Sawan. 2013. The productivity of potato plants affected by urea fertilizer as foliar spraying and humic acid added with irrigation water. Middle East Journal of Agriculture Research 2: 76–83.

    Google Scholar 

  • Reddy, T.Y. and G.H. Reddi. 2002. Irrigation water management. In Principles of Agronomy. Kalyani Publishers, Rajendranagar, Ludhiana: 257–334.

  • Sadeghi-Shoae, M., F. Paknejad, H.H. Darvishi, H. Mozafari, M. Moharramzadeh, and M.R. Tookalloo. 2013. Effect of intermittent furrow irrigation, humic acid and deficit irrigation on water use efficiency of sugar beet. Annals of Biological Research 4: 187–193.

    CAS  Google Scholar 

  • Sajid, M., A. Rab, S.T. Shah, I. Jan, I. Haq, B. Haleema, M. Zamin, R. Alam, and H. Zada. 2012. Humic acids affect the bulb production of onion cultivars. African Journal of Microbiology Research 6: 5769–5776.

    CAS  Google Scholar 

  • Sanli, A., T. Karadogan, and M. Tonguc. 2013. Effects of Leonardite applications on yield and some quality parameters of potatoes (Solanum tuberosum L.). Turkish Journal of Field Crops 18: 20–26.

    Google Scholar 

  • Sarhan, T.Z. 2011. Effect of humic acid and seaweed extracts on growth and yield of potato plant (Solomun tubersum, L.) Desiree cv. Mesopotamia Journal of Agriculture 31: 19–27.

    Google Scholar 

  • Sarhan, T.Z., G.H. Mohammad, and J.A. Teli. 2011. Effects of humic acid and bread yeast on growth and yield of eggplant (Solanum melongena L.). Journal of Agriculture Science and Technology B1: 1091–1096.

    Google Scholar 

  • Selim, E.M., A.A. Mosa, and A.M. EI-Ghamry. 2009. Evaluation of humic substances fertigation through surface and subsurface drip irrigation systems on potato grown under Egyptian sandy soil conditions. Agricultural Water Management 96: 1218–1222.

    Article  Google Scholar 

  • Sharafzadeh, S., M. Deimehr, and A.E. Jahromi. 2011. Effect of irrigation regimes on growth and yield of two potato cultivars. Advances in Environmental Biology 5(7): 1476–1479.

    Google Scholar 

  • Shiri-e-Janagard, M., A. Tobeh, A. Abbasi, S.H. Jamaati-e-Somarin, M. Hassanzadeh, and R. Zabihi-e-Mohmoodabad. 2009. Effects of water stress on water demand, growth and tuber grade of potato (Solanum tuberosum L.) crop. Research Journal of Environmental Sciences 3: 476–485.

    Article  Google Scholar 

  • Shock, C.C., J.C. Zalewski, T.D. Stieber, and D.S. Burnett. 1992. Impact of early-seasonwater deficits on russet Burbank plant development, tuber yield and quality. American Potato Journal 69: 793–803.

    Article  Google Scholar 

  • Shock, C.C., E.B.G. Feibert, and L.D. Saunders. 1998. Potato yield and quality response to deficit irrigation. HortScience 33: 655–659.

    Google Scholar 

  • Shock, C.C., A.B. Pereira, and E.P. Eldredge. 2007. Irrigation best management practices for potato. American Journal of Potato Research 84: 29–37.

    Article  Google Scholar 

  • Somsen, D., A. Capelleb, and J. Tramper. 2004. Manufacturing of par-fried French-fries. I. Production yield as a function of number of tubers per kilogram. Journal of Food Engineering 61: 191–198.

    Article  Google Scholar 

  • Stark, J.C., S.L. Love, B.A. King, J.M. Marshall, W.H. Bohl, and T. Salaiz. 2013. Potato cultivar response to seasonal drought patterns. American Journal of Potato Research 90: 207–216.

    Article  CAS  Google Scholar 

  • Steel, R.G.D., and J.H. Torrie. 1980. Principles and procedures of statistics: A biometrical approach, 2nd ed. New York: McGraw Hill Book Co.

    Google Scholar 

  • Steyn, J.M., D.M. Kagabo, and J.G. Annandale. 2007. Potato growth and yield response to irrigation regimes in contrasting seasons of a subtropical region. African Crop Science Conference Proceeding 8: 1647–1651.

    Google Scholar 

  • Tantowijoyo, W., and E. van de Fliert. 2006. All about Potatoes: An Ecological Guide to Potato Integrated Crop Management. A Handbook to the Ecology and Integrated Management of Potato. International Potato Center (CIP-ESEAP Region) & FAO Regional Vegetable IPM Program in South and Southeast Asia.

  • Thornton, M.K. 2002. Effects of heat and water stress on the physiology of potatoes. Idaho: Idaho Potato Conference.

    Google Scholar 

  • Verlinden, G., B. Pycke, J. Mertens, F. Debersaques, K. Erheyen, G. Baert, J. Brifs, and G. Haesaert. 2009. Application of humic substances results in consistent increases in crop yield and nutrient uptake. Journal of Plant Nutrition 32: 1407–1426.

    Article  CAS  Google Scholar 

  • Walworth, J.L., and D.E. Carling. 2002. Tuber initiation and development in irrigated and non-irrigated potatoes. American Journal of Potato Research 79(6): 387–395.

    Article  Google Scholar 

  • Wright, J.L., and J.C. Stark. 1990. Potato. In: Stewart, B. A. and D. R. Nielson (eds.), Irrigation of Agricultural Crops. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, USA.

  • Yuan, B., S. Nishiyama, and Y. Kamg. 2003. Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agricultural Water Management 63: 153–167.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Deanship of Scientific Research, King Saud University and Agricultural Research Center, College of Food and Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham Saleh Abdel-Razzak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alenazi, M., Wahb-Allah, M.A., Abdel-Razzak, H.S. et al. Water Regimes and Humic Acid Application Influences Potato Growth, Yield, Tuber Quality and Water Use Efficiency. Am. J. Potato Res. 93, 463–473 (2016). https://doi.org/10.1007/s12230-016-9523-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-016-9523-7

Keywords

Navigation