Skip to main content
Log in

Production of pyruvic acid from glycerol by Yarrowia lipolytica

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The aim of the study was to screen Yarrowia lipolytica strains for keto acid production and determine optimal conditions for pyruvic acid biosynthesis from glycerol by the best producer. The analyzed parameters were thiamine concentration, medium pH, stirring speed, and substrate concentration. The screening was performed in flask cultures, whereas pyruvic acid production was carried out in 5-L stirred-tank reactor with 2 L of working volume. In total, 24 Y. lipolytica strains were compared for their abilities to produce pyruvic and α-ketoglutaric acids. The total concentration of both acids ranged from 0.1 to 15.03 g/L. Ten strains were selected for keto acid biosynthesis in bioreactor. The Y. lipolytica SKO 6 strain was identified as the best producer of pyruvic acid. In the selected conditions (thiamine concentration 1.5 μg/L, pH 4.0, stirring speed 800 rpm, 150 g/L of glycerol), the strain Y. lipolytica SKO 6 produced 99.3 g/L of pyruvic acid, with process yield of 0.63 g/g and volumetric production rate of 1.18 g/L/h. Higher titer of pyruvic acid was obtained during fed-batch culture with 200 g/L of glycerol, reaching 125.8 g/L from pure glycerol (yield 0.68 g/g) and 124.4 g/L from crude glycerol (yield 0.62 g/g). Results obtained for the strain Y. lipolytica SKO 6 proved the suitability of microbial production of pyruvic acid at industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PA:

Pyruvic acid

KGA:

α-Ketoglutaric acid

GLY:

Glycerol

Q PA :

Volumetric production rate of pyruvic acid (g/L/h)

Y PA :

Yield of pyruvic acid production (g acid/g glycerol)

q PA :

Specific production rate of pyruvic acid (g/g/h)

References

  • Aguedo M, Ly MH, Belo I, Teixeira JA, Belin J-M, Wache Y (2004) The use of enzymes and microorganisms to produce aroma compounds from lipids. Food Technol Biotechnol 42:327–336

    CAS  Google Scholar 

  • Ai M, Ohdan K (1997) Oxidative dehydrogenation of lactic acid to pyruvic acid over iron phosphate catalyst. Appl Catal A Gen 150:13–20

    CAS  Google Scholar 

  • Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387

    CAS  PubMed  Google Scholar 

  • Berardesca E, Cameli N, Primavera G, Carrera M (2006) Clinical and instrumental evaluation of skin improvement after treatment with a new 50% pyruvic acid peel. Dermatol Surg 32:526–531

    CAS  PubMed  Google Scholar 

  • Bhagavan NV, Chung-Eun H (2011) Essentials of medical biochemistry. Academic Press, Cambridge

    Google Scholar 

  • Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:3131

    PubMed  Google Scholar 

  • Cybulski K, Tomaszewska-Hetman L, Rymowicz W, Rakicka M, Rywińska A (2018a) Yarrowia lipolytica application as a prospective approach for biosynthesis of pyruvic acid from glycerol. Chem Pap 72:3077–3083

    CAS  Google Scholar 

  • Cybulski K, Tomaszewska-Hetman L, Rakicka M, Łaba W, Rymowicz W, Rywińska A (2018b) The bioconversion of waste products from rapeseed processing into keto acids by Yarrowia lipolytica. Industrial Crops & Products 119:102–110

    Google Scholar 

  • Egermeier M, Russmeyer H, Sauer M, Marx H (2017) Metabolic flexibility of Yarrowia lipolytica growing on glycerol. Front Microbial 8:49

    Google Scholar 

  • Fell DA, Wagner A (2000) The small world of metabolism. Nat Biotechnol 18:1121–1122

    CAS  PubMed  Google Scholar 

  • Fickers P, Benetti PH, Waché Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543

    CAS  PubMed  Google Scholar 

  • Fickers P, Marty A, Nicaud JM (2011) The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol Adv 29:632–644

    CAS  PubMed  Google Scholar 

  • First EA (2011) L-DOPA ropes in tRNAPhe. Chem Biol 18:1201–1202

    CAS  PubMed  Google Scholar 

  • Gunawan C, Satianegara G, Chen AK, Breuer M, Hauer B, Rogers PL, Rosche B (2007) Yeast pyruvate decarboxylases: variation in biocatalytic characteristics for (R)-phenylacetylcarbinol production. FEMS Yeast Res 7:33–39

    CAS  PubMed  Google Scholar 

  • Hayashi H, Shigemoto N, Sugiyama S, Masaoka N, Saitoh K (1993) X-ray photoelectron spectra for the oxidation state of TeO2-MoO3 catalyst in the vapor-phase selective oxidation of ethyl lactate to pyruvate. Catal Lett 19:273–277

    CAS  Google Scholar 

  • Holz M, Otto C, Kretzschmar A, Yovkova Y, Aurich A, Poetter M et al (2011) Overexpression of α-ketoglutarate dehydrogenase in Yarrowia lipolytica and its effect on organic acids. Appl Microbiol Biotechnol 89:1519–1526

    CAS  PubMed  Google Scholar 

  • Howard JW, Fraser WA (1932) Preparation of pyruvic acid. Org Synth Coll 1:475–480

    Google Scholar 

  • Huang YC, Chen YF, Chen CY, Chen WI, Ciou YP, Liu WH et al (2011) Production of ferulic acid from lignocellulolytic agricultural biomass by Thermobifida fusca thermostable esterase produced in Yarrowia lipolytica transformant. Bioresour Technol 102:8117–8122

    CAS  PubMed  Google Scholar 

  • Juszczyk P, Musiał I, Rymowicz W (2005) Selection of yeast strains for biomass production from raw glicerol (in polish). Acta Sci Pol Biotechnologia 4:65–67

    Google Scholar 

  • Juszczyk P, Marcinkiewicz M, Rywińska A, Rymowicz W (2012) Biosynthesis of erythritol from glycerol by Yarrowia lipolytica yeasts in a batch culture (in polish). Inż Ap Chem 51:133–134

    CAS  Google Scholar 

  • Juszczyk P, Tomaszewska L, Kita A, Rymowicz W (2013) Biomass production by novel strains of Yarrowia lipolytica using raw glycerol, derived from biodiesel production. Bioresour Technol 137:124–131

    CAS  PubMed  Google Scholar 

  • Kamzolova SV, Morgunov IG (2013) α-Ketoglutaric acid production from rapeseed oil by Yarrowia lipolytica yeast. Appl Microbiol Biotechnol 97:5517–5525

    CAS  PubMed  Google Scholar 

  • Kamzolova SV, Morgunov IG (2016) Biosynthesis of pyruvic acid from glucose by Blastobotrys adeninivorans. Appl Microbiol Biotechnol 100:7689–7697

    CAS  PubMed  Google Scholar 

  • Kamzolova SV, Morgunov IG (2018) Biosynthesis of pyruvic acid from glycerol-containing substrates and its regulation in the yeast Yarrowia lipolytica. Bioresour Technol 266:125–133. https://doi.org/10.1016/j.biortech.2018.06.071

    CAS  PubMed  Google Scholar 

  • Kamzolova SV, Finogenova TV, Morgunov IG (2008) Microbiological production of citric and isocitric acids from sunflower oil. Food Technol Biotechnol 46:51–59

    CAS  Google Scholar 

  • Kamzolova SV, Fatykhova AR, Dedyukhina EG, Anastassiadis SG, Morgunov IG (2011) Citric acid production by yeast grown on glycerol-containing waste from biodiesel industry. Food Technol Biotechnol 46:51–59

    Google Scholar 

  • Kamzolova SV, Chinglintseva MN, Yusupova AI, Vinokurova NG, Lysanskaya VY, Morgunov IG (2012) Biotechnological potential of Yarrowia lipolytica grown under thiamine limitation. Food Technol Biotechnol 50:412–419

    CAS  Google Scholar 

  • Kim E (1999) Effect of thiamine on the by-products formation by Yarrowia lipolytica. Biotechnol Bioprocess Eng 4:185–188

    CAS  Google Scholar 

  • Kiuchi M, Mori T, Takami I, Monma M, Tabei H (1987) Pyruvate production by a halophilic yeast Torulopsis etchellsii. J Jpn Soc Food Sci Technol 33:579–584

    Google Scholar 

  • Lee YC, Chien HC, Hsu WH (2007) Production of N-acetyl-D-neuraminic acid by recombinant whole cells expressing Anabaena sp. CH1 N-acetyl-D-glucosamine 2-epimerase and Escherichia coli N-acetyl-D-neuraminic acid lyase. J Biotechnol 129:453–460

    CAS  PubMed  Google Scholar 

  • Li Y, Chen J, Lun SY (2001a) Biotechnological production of pyruvic acid. Appl Microbiol Biotechnol 57:451–459

    CAS  PubMed  Google Scholar 

  • Li Y, Chen J, Lun SY, Rui XS (2001b) Efficient pyruvate production by a multi-vitamin auxotroph of Torulopsis glabrata: key role and optimization of vitamin levels. Appl Microbiol Biotechnol 55:680–685

    CAS  PubMed  Google Scholar 

  • Liu LM, Li Y, Li HZ, Chen J (2004) Manipulating the pyruvate dehydrogenase bypass of a multi-vitamin auxotrophic yeast Torulopsis glabrata enhanced pyruvate production. Lett Appl Microbiol 39:199–206

    CAS  PubMed  Google Scholar 

  • Liu L, Xu Q, Li Y, Shi Z, Zhu Y, Du G, Chen J (2007) Enhancement of pyruvate production by osmotic-tolerant mutant of Torulopsis glabrata. Biotechnol Bioeng 97:825–832

    CAS  PubMed  Google Scholar 

  • Lütke-Eversloh T, Santos CN, Stephanopoulos G (2007) Perspectives of biotechnological production of L-tyrosine and its applications. Appl Microbiol Biotechnol 77:751–762

    PubMed  Google Scholar 

  • Maleki N, Eiteman MA (2017) Recent progress in the microbial production of pyruvic acid. Fermentation 3:8

    Google Scholar 

  • Marczyk B, Mucha P, Rotsztejn H (2012) Effect of chemical peelings the most often used in acne vulgaris (in polish). Dermatologia Kliniczna 14:183–187

    Google Scholar 

  • Mirończuk AM, Dobrowolski A, Rakicka M, Rywińska A, Rymowicz W (2015) Newly isolated mutant of Yarrowia lipolytica MK1 as a proper host for efficient erythritol biosynthesis from glycerol. Process Biochem 50:61–68

    Google Scholar 

  • Miyata R, Yonehara T (1996) Improvement of fermentative production of pyruvate from glucose by Torulopsis glabrata IFO 0005. J Ferment Bioeng 82:475–479

    CAS  Google Scholar 

  • Morgunov IG, Kamzolova SV, Perevoznikova OA, Shishkanova NV, Finogenova TV (2004) Pyruvic acid production by a thiamine auxotroph of Yarrowia lipolytica. Process Biochem 39:1469–1474

    CAS  Google Scholar 

  • Moriguchi M (1982) Fermentative production of pyruvic acid from citrus peel extract by Debaryomyces coudertii. Agric Biol Chem 46:955–961

    CAS  Google Scholar 

  • Nakazawa H, Enei H, Okamura S, Yamada H (1972) Synthesis of L-tryptophan from pyruvate. Agric Biol Chem 32:2528–2532

    Google Scholar 

  • Ogrydziak DM (1988) Production of alkaline extracellular protease produced by Yarrowia lipolytica. Crit Rev Biotechnol 8:177–187

    CAS  Google Scholar 

  • Rymowicz W, Rywińska A, Żarowska B, Juszczyk P (2006) Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chem Pap 60:391–394

    CAS  Google Scholar 

  • Rymowicz W, Rywińska A, Marcinkiewicz M (2009) High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol Lett 31:377–380

    CAS  PubMed  Google Scholar 

  • Rywińska A, Rymowicz W (2010) High-yield production of citric acid by Yarrowia lipolytica on glycerol in repeated-batch bioreactors. J Ind Microbiol Biotechnol 37:431–435

    PubMed  Google Scholar 

  • Rywińska A, Rymowicz W, Żarowska B, Skrzypiński Adam (2010) Comparison of citric acid production from glycerol and glucose by different strains of Yarrowia lipolytica. World J Microbiol Biotechnol 26 (7):1217–1224

    PubMed  Google Scholar 

  • Rywińska A, Bąk M, Rakicka M, Tomaszewska L, Boruczkowski T, Lazar Z, Rymowicz W (2012) Selection of the UV mutants of Yarrowia lipolytica yeast for erythritol biosynthesis from glycerol (in polish). Acta Sci Pol Biotechnologia 11:23–38

    Google Scholar 

  • Rywińska A, Juszczyk P, Wojtatowicz M, Robak M, Lazar Y, Tomaszewska L, Rymowicz W (2013) Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass Bioenergy 48:148–166

    Google Scholar 

  • Sawai H, Mimitsuka T, Minegishi SI, Henmi M, Yamada K, Shimizu S, Yonehara T (2011) A novel membrane-integrated fermentation reactor system: application to pyruvic acid production in continuous culture by Torulopsis glabrata. Bioprocess Biosyst Eng 34:721–725

    CAS  PubMed  Google Scholar 

  • Tomaszewska L, Rywińska A, Musiał I, Utecht M, Juszczyk P, Rymowicz W, Połomska X (2011) Screening of Yarrowia lipolytica yeast strains for erythritol production from glycerol (in polish). Acta Sci Pol, Biotechnologia 10:15–28

    Google Scholar 

  • Tomaszewska L, Rywińska A, Gładkowski W (2012) Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J Ind Microbiol Biotechnol 39:1333–1343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomaszewska L, Rakicka M, Rymowicz W, Rywińska A (2014) A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells. FEMS Yeast Res 14:966–976

    CAS  PubMed  Google Scholar 

  • Uchio R, Hirose Y, Node I (1974a) Fermentative production of pyruvic acid. JP patent 74132291

  • Uchio R, Maeyashiki I, Okada H (1974b) Fermentative production of puruvic acid. JP patent 74102894

  • Uchio R, Kikuchi K, Enei H, Hirose Y (1976) Process for producing pyruvic acid by fermentation. US Patent 3993534

  • van Maris AJ, Geertman J-MA, Vermeulen A, Groothuizen MK, Winkler AA, Piper MD, van Dijken JP, Pronk JT (2004) Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol 70:159–166

    PubMed  PubMed Central  Google Scholar 

  • Wang Q, He P, Lu D, Shen A, Jiang N (2002) Screening of pyruvate-producing yeast and effect of nutritional conditions on pyruvate production. Lett Appl Microbiol 35:338–342

    CAS  PubMed  Google Scholar 

  • Wang X, Perez E, Liu R, Yan L-J, Mallet RT, Yang S-H (2007) Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res 1132:1–9

    CAS  PubMed  Google Scholar 

  • Xu P, Qui J, Gao C, Ma C (2008) Biotechnological routes to pyruvate production. J Biosci Bioeng 105:169–175

    CAS  PubMed  Google Scholar 

  • Yanai T, Tsunekawa H, Okamura K, Okamoto R (1994) Manufacture of pyruvic acid with Debaryomyces. JP patent 0600091

  • Yang S, Chen X, Xu N, Liu L, Chen J (2014) Urea enhances cell growth and pyruvate production in Torulopsis glabrata. Biotechnol Prog 30:19–27

    CAS  PubMed  Google Scholar 

  • Zhang J, Gao NF (2007) Application of response surface methodology in medium optimization for pyruvic acid production of Torulopsis glabrata TP19 in batch fermentation. J Zhejiang Univ Sci B 8:98–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Zhou H, Du G, Liu L, Chen J (2010) Screening of a thiamine-auxotrophic yeast for α-ketoglutaric acid overproduction. Lett Appl Microbiol 51:264–271

    CAS  PubMed  Google Scholar 

Download references

Funding

Publication was supported by Wrocław Centre of Biotechnology, program The Leading National Research Centre (KNOW) for years 2014–2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Cybulski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cybulski, K., Tomaszewska-Hetman, L., Rakicka, M. et al. Production of pyruvic acid from glycerol by Yarrowia lipolytica. Folia Microbiol 64, 809–820 (2019). https://doi.org/10.1007/s12223-019-00695-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-019-00695-2

Navigation