Skip to main content
Log in

Increased oxidative stress tolerance results in general stress tolerance in Candida albicans independently of stress-elicited morphological transitions

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A selection of tert-butylhydroperoxide (tBOOH)-tolerant Candida albicans mutants showed increased tolerances to 19 different stress conditions. These mutants are characterized by a constitutively upregulated antioxidative defense system and, therefore, adaptation to oxidative stress may play an important role in gaining general stress tolerance in C. albicans. Although C. albicans cells may undergo morphological transitions under various stress treatments, this ability shows considerable stress-specific and strain-specific variability and, hence, it is independent of mounting stress cross protections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alonso-Monge R, Navarro-García F, Molero G, Diez-Orejas R, Gustin M, Pla J, Sánchez M, Nombela C (1999) Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 181:3058–3068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alonso-Monge R, Navarro-García F, Román E, Negredo AI, Eisman B, Nombela C, Pla J (2003) The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 2:351–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alonso-Monge R, Román E, Nombela C, Pla J (2006) The MAP kinase signal transduction network in Candida albicans. Microbiology 152:905–912

    Article  Google Scholar 

  • Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Argüelles JC (2002) Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology 148:2599–2606

    CAS  PubMed  Google Scholar 

  • Arana DM, Nombela C, Alonso-Monge R, Pla J (2005) The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans. Microbiology 151:1033–1049

    Article  CAS  PubMed  Google Scholar 

  • Argimón S, Fanning S, Blankenship JR, Mitchell AP (2011) Interaction between the Candida albicans high-osmolarity glycerol (HOG) pathway and the response to human beta-defensins 2 and 3. Eukaryot Cell 10:272–275

    Article  PubMed Central  PubMed  Google Scholar 

  • Berry DB, Guan Q, Hose J, Haroon S, Gebbia M, Heisler LE, Nislow C, Giaever G, Gasch AP (2011) Multiple means to the same end: the genetic basis of acquired stress resistance in yeast. PLoS Genet 7:e1002353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brennan RJ, Schiestl RH (1996) Cadmium is an inducer of oxidative stress in yeast. Mutat Res 356:171–178

    Article  PubMed  Google Scholar 

  • Cheetham J, MacCallum DM, Doris KS, da Silva DA, Scorfield S, Odds F, Smith DA, Quinn J (2011) MAPKKK-independent regulation of the Hog1 stress-activated protein kinase in Candida albicans. J Biol Chem 286:42002–42016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collinson LP, Dawes IW (1992) Inducibility of the response of yeast cells to peroxide stress. J Gen Microbiol 138:329–335

    Article  CAS  PubMed  Google Scholar 

  • da Silva DA, Patterson MJ, Smith DA, Maccallum DM, Erwig LP, Morgan BA, Quinn J (2010) Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans. Mol Cell Biol 30:4550–4563

    Article  Google Scholar 

  • Davidson JF, Whyte B, Bissinger PH, Schiestl RH (1996) Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93:5116–5121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dziadkowiec D, Krasowska A, Liebner A, Sigler K (2007) Protective role of mitochondrial superoxide dismutase against high osmolarity, heat and metalloid stress in Saccharomyces cerevisiae. Folia Microbiol 52:120–126

    Article  CAS  Google Scholar 

  • Eisman B, Alonso-Monge R, Román E, Arana D, Nombela C, Pla J (2006) The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryot Cell 5:347–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Enjalbert B, Smith DA, Cornell MJ, Alam I, Nicholls S, Brown AJ, Quinn J (2006) Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell 17:1018–1032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erdei É, Molnár M, Gyémánt G, Antal K, Emri T, Pócsi I, Nagy J (2011) Trehalose overproduction affects the stress tolerance of Kluyveromyces marxianus ambiguously. Bioresour Technol 102:7232–7235

    Article  CAS  PubMed  Google Scholar 

  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24:469–486

    Article  CAS  PubMed  Google Scholar 

  • Fekete A, Emri T, Gyetvai A, Gazdag Z, Pesti M, Varga Z, Balla J, Cserháti C, Emődy L, Gergely L, Pócsi I (2007) Development of oxidative stress tolerance resulted in reduced ability to undergo morphologic transitions and decreased pathogenicity in a t-butylhydroperoxide-tolerant mutant of Candida albicans. FEMS Yeast Res 7:834–847

    Article  CAS  PubMed  Google Scholar 

  • Fekete A, Pócsi I, Emri T, Gyetvai A, Gazdag Z, Pesti M, Karányi Z, Majoros L, Gergely L, Pócsi I (2008) Physiological and morphological characterization of tert-butylhydroperoxide tolerant Candida albicans mutants. J Basic Microbiol 48:480–487

    Article  CAS  PubMed  Google Scholar 

  • Flattery-O’Brian J, Collinson LP, Dawes IW (1993) Saccharomyces cerevisiae has an inducible response to menadione which differs that to hydrogen peroxide. J Gen Microbiol 139:501–507

    Article  Google Scholar 

  • Fradin C, Kretschmar M, Nichterlein T, Gaillardin C, d’Enfert C, Hube B (2003) Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 47:1523–1543

    Article  CAS  PubMed  Google Scholar 

  • Fradin C, De Groot P, MacCallum D, Schaller M, Klis F, Odds FC, Hube B (2005) Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56:397–415

    Article  CAS  PubMed  Google Scholar 

  • Gasch AP (2007) Comparative genomics of the environmental stress responses in ascomycete fungi. Yeast 24:961–976

    Article  CAS  PubMed  Google Scholar 

  • Gónzalez-Párraga P, Alonso-Monge R, Plá J, Argüelles JC (2010) Adaptive tolerance to oxidative stress and the induction of antioxidant enzymatic activities in Candida albicans are independent of the Hog1 and Cap1-mediated pathways. FEMS Yeast Res 10:747–756

    Article  PubMed  Google Scholar 

  • Gyetvai Á, Emri T, Takács K, Dergez T, Fekete A, Pesti M, Pócsi I, Lenkey B (2006) Lovastatin possesses a fungistatic effect against Candida albicans, but does not trigger apoptosis in this opportunistic human pathogen. FEMS Yeast Res 6:1140–1148

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara D, Asano Y, Marui J, Yoshimi A, Mizuno T, Abe K (2009) Transcriptional profiling of Aspergillus nidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress. Fungal Genet Biol 46:868–878

    Article  CAS  PubMed  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Huang G (2012) Regulation of phenotypic transitions in the fungal pathogen Candida albicans. Virulence 3:251–261

    Article  PubMed Central  PubMed  Google Scholar 

  • Jamieson DJ, Stephen DW, Terrière EC (1996) Analysis of the adaptive oxidative stress response of Candida albicans. FEMS Microbiol Lett 138:83–88

    Article  CAS  PubMed  Google Scholar 

  • Koziol S, Zagulski M, Bilinski T, Bartosz G (2005) Antioxidants protect the yeast Saccharomyces cerevisiae against hypertonic stress. Free Radic Res 39:365–371

    Article  CAS  PubMed  Google Scholar 

  • Leach MD, Budge S, Walker L, Munro C, Cowen LE, Brown AJP (2012) Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodeling by MAPK signalling during thermal adaptation in a pathogenic yeast. PLoS Pathog 8:e1003069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SM, Park JW (1998) Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase. Arch Biochem Biophys 359:99–106

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang X, Zhang Z (2010) Cu, Zn-superoxide dismutase is required for cell wall structure and for tolerance to cell wall-perturbing agents in Saccharomyces cerevisiae. FEBS Lett 584:1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Mavor AL, Thewes S, Hube B (2005) Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr Drug Targets 6:863–874

    Article  CAS  PubMed  Google Scholar 

  • Menezes RA, Amaral C, Batista-Nascimento L, Santos C, Ferreira RB, Devaux F, Eleutherio EC, Rodrigues-Pousada C (2008) Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress. Biochem J 414:301–311

    Article  CAS  PubMed  Google Scholar 

  • Miramón P, Dunker C, Windecker H, Bohovych IM, Brown AJ, Kurzai O, Hube B (2012) Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress. PLoS One 7:e52850

    Article  PubMed Central  PubMed  Google Scholar 

  • Muthukumar K, Rajakumar S, Sarkar MN, Nachiappan V (2011) Glutathione peroxidase3 of Saccharomyces cerevisiae protects phospholipids during cadmium-induced oxidative stress. Antonie Van Leeuwenhoek 99:761–771

    Article  CAS  PubMed  Google Scholar 

  • Nasution O, Srinivasa K, Kim M, Kim YJ, Kim W, Jeong W, Choi W (2008) Hydrogen peroxide induces hyphal differentiation in Candida albicans. Eukaryot Cell 7:2008–2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park JI, Grant CM, Davies MJ, Dawes IW (1998) The cytoplasmic Cu, Zn superoxide dismutase of Saccharomyces cerevisiae is required for resistance to freeze-thaw stress. Generation of free radicals during freezing and thawing. J Biol Chem 273:22921–22928

    Article  CAS  PubMed  Google Scholar 

  • Phillips AJ, Sudbery I, Ramsdale M (2003) Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc Natl Acad Sci U S A 100:14327–14332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 28 September 2013

  • San José C, Monge RA, Pérez-Díaz R, Pla J, Nombela C (1996) The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J Bacteriol 178:5850–5852

    PubMed Central  PubMed  Google Scholar 

  • Schüller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13:4382–4389

    PubMed Central  PubMed  Google Scholar 

  • Semchyshyn HM, Abrat OB, Miedzobrodzki J, Inoue Y, Lushchak VI (2011) Acetate but not propionate induces oxidative stress in bakers’ yeast Saccharomyces cerevisiae. Redox Rep 16:15–23

    Article  CAS  PubMed  Google Scholar 

  • Smith DA, Nicholls S, Morgan BA, Brown AJP, Quinn J (2004) A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell 15:4179–4190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivasa K, Kim J, Yee S, Kim W, Choi W (2012) A MAP kinase pathway is implicated in the pseudohyphal induction by hydrogen peroxide in Candida albicans. Mol Cells 33:183–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sudbery P, Gow N, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12:317–324

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama K, Kawamura A, Izawa S, Inoue Y (2000) Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. Biochem J 352:71–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trollmo C, André L, Blomberg A, Adler L (1988) Physiological overlap between osmotolerance and thermotolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 56:321–326

    Article  CAS  Google Scholar 

  • Trotter EW, Grant CM (2002) Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae. Mol Microbiol 46:869–878

    Article  CAS  PubMed  Google Scholar 

  • Vylkova S, Jang WS, Li W, Nayyar N, Edgerton M (2007) Histatin 5 initiates osmotic stress response in Candida albicans via activation of the Hog1 mitogen-activated protein kinase pathway. Eukaryot Cell 6:1876–1888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Chang P, Ding J, Chen J (2013) Distinct and redundant roles of the two MYST histone acetyltransferases Esa1 and Sas2 in cell growth and morphogenesis of Candida albicans. Eukaryot Cell 12:438–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zakrzewska A, van Eikenhorst G, Burggraaff JE, Vis DJ, Hoefsloot H, Delneri D, Oliver SG, Brul S, Smits GJ (2011) Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness. Mol Biol Cell 22:4435–4446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Onda K, Imai R, Fukuda R, Horiuchi H, Ohta A (2003) Growth temperature downshift induces antioxidant response in Saccharomyces cerevisiae. Biochem Biophys Res Commun 307:308–314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Prof P. Sudbery (University of Sheffield) for his generous help in the identification of the morphological forms. The authors thank Mr. Imre Pócsi (University of Debrecen) for his valuable contribution to the growth inhibitory assays and Misters László Papp, Máté Szarka, and Imre Boczonádi (University of Debrecen) for their kind help in the microscopic techniques. This project was supported financially by the TÁMOP 4.2.1./B-09/1/KONV-2010-0007, the TÁMOP-4.2.2/B-10/1-2010-002, and the TÁMOP-4.2.2/B-10/1-2010-0024 projects, which are cofinanced by the European Union and the European Social Fund.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Pócsi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental File 1

(DOC 174 kb)

Supplemental File 2

(XLS 40 kb)

Supplemental File 3

(XLS 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakab, Á., Antal, K., Kiss, Á. et al. Increased oxidative stress tolerance results in general stress tolerance in Candida albicans independently of stress-elicited morphological transitions. Folia Microbiol 59, 333–340 (2014). https://doi.org/10.1007/s12223-014-0305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-014-0305-7

Keywords

Navigation