Skip to main content
Log in

A MAP kinase pathway is implicated in the pseudohyphal induction by hydrogen peroxide in Candica albicans

  • Published:
Molecules and Cells

Abstract

Hydrogen peroxide (H2O2) functions as a ubiquitous intracellular messenger besides as an oxidative stress molecule. This dual role is based on the distinct cellular responses against different concentrations of H2O2. Previously, we demonstrated that both low (> 1 mM) and high (4–10 mM) doses of exogenous H2O2 induce filamentous growth with distinct cell morphology and growth rate in Candida albicans, suggesting the different transcription response. In this study, we revealed that the sub-toxic and toxic levels of H2O2 indeed induced pseudohyphae, but not true hyphae. Supporting this, several hyphae-specific genes that are expressed in true hyphae induced by serum were not detected in either sub-toxic or toxic H2O2 condition. A DNA microarray analysis was conducted to reveal the transcription profiles in cells treated with sub-toxic and toxic conditions of H2O2. Under the sub-toxic condition, a small number of genes involved in cell proliferation and metabolism were up-regulated, whereas a large number of genes were up-regulated in the toxic condition where the genes required for growth and proliferation were selectively restricted. For pseudohyphal induction by sub-toxic H2O2, Cek1 MAPK activating the transcription factor Cph1 was shown to be important. The absence of expression of several hyphae-specific genes known to be downstream targets of Cph1-signaling pathway for true hyphae formation suggests that the Cek1-mediated signaling pathway is not solely responsible for pseudohyphal formation by subtoxic H2O2 and, but instead, complex networking pathway may exists by the activation of different regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre, J., Rios-Momberg, M., Hewitt, D., and Hansberg, W. (2005). Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol. 13, 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Monge, R., Roman, E., Arana, D.M., Prieto, D., Urrialde, V., Nombela, C., and Pal, J. (2010). The Sko1 protein represses the yeast-to-hypha transition and regulates the oxidative stress response in Candida albicans. Fungal Genet. Biol. 47, 587–601.

    Article  PubMed  CAS  Google Scholar 

  • Andaluz, E., Ciudad, T., Gomez-Raja, J., Calderone, R., and Larriba, G. (2006). Rad52 depletion in Candida albicans triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes. Mol. Microbiol. 59, 1452–1472.

    Article  PubMed  CAS  Google Scholar 

  • Bachewich, C., and Whiteway, M. (2005). Cyclin Cln3p links G1 progression to hyphal and pseudohyphal development in Candida albicans. Eukaryot. Cell 4, 95–102.

    Article  PubMed  CAS  Google Scholar 

  • Bensen, E.S., Filler, S.G., and Berman, J. (2002). A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot. Cell 1, 787–798.

    Article  PubMed  CAS  Google Scholar 

  • Berman, J. (2006). Morphogenesis and cell cycle progression in Candida albicans. Curr. Opin. Microbiol. 9, 595–601.

    Article  PubMed  CAS  Google Scholar 

  • Biswas, S., Van Dijck, P., and Datta, A. (2007). Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol. Mol. Biol. Rev. 71, 348–376.

    Article  PubMed  CAS  Google Scholar 

  • Biteau, B., Labarre, J., and Toledano, M.B. (2003). ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980–984.

    Article  PubMed  CAS  Google Scholar 

  • Boisnard, S., Ruprich-Robert, G., Florent, M., Da Silva, B., Chapeland-Leclerc, F., and Papon, N. (2008). Role of Sho1p adaptor in the pseudohyphal development, drugs sensitivity, osmotolerance and oxidant stress adaptation in the opportunistic yeast Candida lusitaniae. Yeast 25, 849–859.

    Article  PubMed  CAS  Google Scholar 

  • Braun, B.R., and Johnson, A.D. (1997). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105–109.

    Article  PubMed  CAS  Google Scholar 

  • Buggisch. M., Ateghang, B., Ruhe, C., Strobel, C., Lange, S., Wartenberg, M., and Sauer, H. (2007). Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase. J. Cell Sci. 120, 885–894.

    Article  PubMed  CAS  Google Scholar 

  • Butler, D.K., All, O., Goffena, J., Loveless, T., Wilson, T., and Toenjes, K.A. (2006). The GRR1 gene of Candida albicans is involved in the negative control of pseudohyphal morphogenesis. Fungal Genet. Biol. 43, 573–582.

    Article  PubMed  CAS  Google Scholar 

  • Calderone, R.A., and Fonzi, W.A. (2001). Virulence factors of Candida albicans. Trends Microbiol. 9, 327–335.

    Article  PubMed  CAS  Google Scholar 

  • Castillo, L., Calvo, E., Martinez, A.I., Ruiz-Herrera, J., Valentin, E., Lopez, J.A., and Santandreu, R. (2008). A study of the Candida albicans cell wall proteome. Proteomics 8, 3871–3881.

    Article  PubMed  CAS  Google Scholar 

  • Cleary, I.A., Mulabagal, P., Reinhard, S.M., Yadev, N.P., Murdoch, C., Thornhill, M.H., Lazzell, A.L., Monteaqudo, C., Thomas, D.P., and Saville, S.P. (2010). Pseudohyphal regulation by the transcription factor Rfg1p in Candida albicans. Eukaryot. Cell 9, 1363–1373.

    Article  PubMed  CAS  Google Scholar 

  • Cottier, F., and Muhlschlegel, F.A. (2009). Sensing the environment: response of Candida albicans to the X factor. FEMS Microbiol. Lett. 295, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Csank, C., Schroppel, K., Leberer, E., Harcus, D., Mohamed, O., Meloche, S., Thomas, D.Y., and Whiteway, M. (1998). Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect. Immun. 66, 2713–2721.

    PubMed  CAS  Google Scholar 

  • Davies, K.J. (2000). Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50, 279–289.

    Article  PubMed  CAS  Google Scholar 

  • Dhillon, N.K., Sharma, S., and Khuller, G.K. (2003). Signaling through protein kinases and transcriptional regulators in Candida albicans. Crit. Rev. Microbiol. 29, 259–275.

    Article  PubMed  CAS  Google Scholar 

  • Foreman, J., Demidchik, V., Bothwell, J.H., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D., et al. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442–446.

    Article  PubMed  CAS  Google Scholar 

  • Harcus, D., Nantel, A., Marcil, A., Rigby, T., and Whiteway, M. (2004). Transcription profiling of cyclic AMP signaling in Candida albicans. Mol. Biol. Cell. 15, 4490–4499.

    Article  PubMed  CAS  Google Scholar 

  • Hong, J., Zhang, J., Liu, Z., Qin, S., Wu, J., and Shi, Y. (2009). Solution structure of S. cerevisiae PDCD5-like protein and its promoting role in H(2)O(2)-induced apoptosis in yeast. Biochemistry 48, 6824–6834.

    Article  PubMed  CAS  Google Scholar 

  • Hornby, J.M., Dumitru, R., and Nickerson, K.W. (2004). High phosphate (up to 600 mM) induces pseudohyphal development in five wild type Candida albicans. J. Microbiol. Methods 56, 119–124.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, C.S., Oh, J.H., Huh, W.K., Yim, H.S., and Kang, S.O. (2003). Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Mol. Microbiol. 47, 1029–1043.

    Article  PubMed  CAS  Google Scholar 

  • Kadosh, D., and Johnson, A.D. (2001). Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol. Cell. Biol. 21, 2496–2505.

    Article  PubMed  CAS  Google Scholar 

  • Kunze, D., and MacCallum, D. (2007). Odds FC, Hube B. Multiple functions of DOA1 in Candida albicans. Microbiology 153, 1026–1041.

    Article  PubMed  CAS  Google Scholar 

  • Lane, S., Birse, C., Zhou, S., Matson, R., and Liu, H. (2001). DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J. Biol. Chem. 276, 48988–48996.

    Article  PubMed  CAS  Google Scholar 

  • Leberer, E., Harcus, D., Broadbent, I.D., Clark, K.L., Dignard, D., Ziegelbauer, K., Schmidt, A., Gow, N.A., Brown, A.J., and Thomas, D.Y. (1996). Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc. Natl. Acad. Sci. USA 93, 13217–13222.

    Article  PubMed  CAS  Google Scholar 

  • Leng, P., Lee, P.R., Wu, H., and Brown, A.J. (2001). Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J. Bacteriol. 183, 4090–4093.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Stouffs, M., Serrander, L., Banfi, B., Bettiol, E., Charnay, Y., Steger, K., Krause, K.H., and Jaconi, M.E. (2006). The NADPH oxidase NOX4 drives cardiac differentiation: Role in regulating cardiac transcription factors and MAP kinase activation. Mol. Biol. Cell. 17, 3978–3988.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Kohler, J., and Fink, G.R. (1994). Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266, 1723–1726.

    Article  PubMed  CAS  Google Scholar 

  • Lo, H.J., Kohler, J.R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A., and Fink, G.R. (1997). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949.

    CAS  Google Scholar 

  • Lorenz, M.C., Bender, J.A., and Fink, G.R. (2004). Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3, 1076–1087.

    Article  PubMed  CAS  Google Scholar 

  • Martin, K.R., and Barrett, J.C. (2002). Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Hum. Exp. Toxicol. 21, 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Mesquita, F.S., Dyer, S.N., Heinrich, D.A., Bulun, S.E., Marsh, E.E., and Nowak, R.A. (2009). Reactive oxygen species mediate mitogenic growth factor signaling pathways in human leiomyoma smooth muscle cells. Biol. Reprod. 2009.

  • Murad, A.M., d’Enfert, C., Gaillardin, C., Tournu, H., Tekaia, F., Talibi, D., Marechal. D., Marchais, V., Cottin, J., and Brown A.J. (2001a). Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol. Microbiol. 42, 981–993.

    Article  PubMed  CAS  Google Scholar 

  • Murad, A.M., Leng, P., Straffon, M., Wishart, J., Macaskill, S., Mac-Callum, D., Schnell, N. Talibi, D., Marechal, D., Tekaia, F., et al. (2001b). NRG1 represses yeast-hypha morphogenesis and hyphaspecific gene expression in Candida albicans. EMBO J. 20, 4742–4752.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, H. (2005). Thioredoxin and its related molecules: update. Antioxid. Redox. Signal. 7, 823–828.

    Article  PubMed  CAS  Google Scholar 

  • Nantel, A., Dignard, D., Bachewich, C., Harcus, D., Marcil, A., Bouin, A.P., Sensen, C.W., Hogues, H., van het Hoog., M., Gordon, P., et al. (2002). Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol. Biol. Cell. 13, 3452–3465.

    Article  PubMed  CAS  Google Scholar 

  • Nasution, O., Srinivasa, K., Kim, M., Kim, Y.J., Kim, W., Jeong, W., and Choi, W.J. (2008). Hydrogen peroxide induces hyphal differentiation in Candida albicans. Eukaryot. Cell 7, 2008–2011.

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Garcia, F., Sanchez, M., Pla, J., and Nombela, C. (1995). Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol. Cell. Biol. 15, 2197–2206.

    PubMed  CAS  Google Scholar 

  • Ohba, M., Shibanuma, M., Kuroki, T., and Nose, K. (1994). Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J. Cell Biol. 126, 1079–1088.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, A.J., Sudbery, I., and Ramsdale, M. (2003). Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. USA 100, 14327–14332.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, A.J., Crowe, J.D., and Ramsdale, M. (2006). Ras pathway signaling accelerates programmed cell death in the pathogenic fungus Candida albicans. Proc. Natl. Acad. Sci. USA 103, 726–731.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, J., Findlay, V.J., Dawson, K., Millar, J.B., Jones, N., Morgan, B.A., and Toone, W.M. (2002). Distinct regulatory proteins control the graded transcriptional response to increasing H(2)O(2) levels in fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell. 13, 805–816.

    Article  PubMed  CAS  Google Scholar 

  • Reth, M. (2002). Hydrogen peroxide as second messenger in lymphocyte activation. Nat. Immunol. 3, 1129–1134.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, S.G., Bae, Y.S., Lee, S.R., and Kwon, J. (2000). Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. STKE 2000; PE1.

  • Rhee, S.G., Kang, S.W., Jeong, W., Chang, T.S., Yang, K.S., and Woo, H.A. (2005). Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell. Biol. 17, 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, S.G., Chang, T.S., Jeong, W., Kang, D. (2010). Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol. Cells 29, 539–549.

    Article  PubMed  CAS  Google Scholar 

  • Rocha, C.R., Schroppel, K., Harcus, D., Marcil, A., Dignard, D., Taylor, B.N., Thomas, D.Y., Whiteway, M., and Leberer, E. (2001). Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol. Biol. Cell 12, 631–643.

    Google Scholar 

  • Roman, E., Arana, D.M., Nombela, C., Alonso-Monge, R., and Pla, J. (2007). MAP kinase pathways as regulators of fungal virulence. Trends Microbiol. 15, 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Rupp, S., Summers, E., Lo, H.J., Madhani, H., and Fink, G. (1999). MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 18, 1257–1269.

    Article  PubMed  CAS  Google Scholar 

  • Sablina, A.A., Budanov, A.V., Ilyinskaya, G.V., Agapova, L.S., Kravchenko, J.E., and Chumakov, P.M. (2005). The antioxidant function of the p53 tumor suppressor. Nat. Med. 11, 1306–1313.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., and Russell, D.W. (2001). Molecular cloning: a laboratory manual. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).

    Google Scholar 

  • Shin, D.H., Jung, S., Park, S.J., Kim, Y.J., Ahn, J.M., Kim, W., and Choi, W. (2005). Characterization of thiol-specific antioxidant 1 (TSA1) of Candida albicans. Yeast (Chichester, England) 22, 907–918.

    Article  CAS  Google Scholar 

  • Stoldt, V.R., Sonneborn, A., Leuker, C.E., and Ernst, J.F. (1997). Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 16, 1982–1991.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J.R., and Yang, S. (2006). Hydrogen peroxide: a signaling messenger. Antioxid. Redox. Signal. 8, 243–270.

    Article  PubMed  CAS  Google Scholar 

  • Sudbery, P., Gow, N., and Berman, J. (2004). The distinct morphogenic states of Candida albicans. Trends Microbiol. 12, 317–324.

    Article  PubMed  CAS  Google Scholar 

  • Sundaresan, M., Yu, Z.X., Ferrans, V.J., Irani, K., and Finkel, T. (1995). Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299.

    Article  PubMed  CAS  Google Scholar 

  • Thannickal, V.J., and Fanburg, B.L. (2000). Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L1005–28.

    PubMed  CAS  Google Scholar 

  • Veal, E.A., Day, A.M., and Morgan, B.A. (2007). Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Vivancos, A.P., Jara, M., Zuin, A., Sanso, M., and Hidalgo, E. (2006). Oxidative stress in Schizosaccharomyces pombe: different H2O2 levels, different response pathways. Mol. Genet. Genomics 276, 495–502.

    Article  PubMed  CAS  Google Scholar 

  • Wightman, R., Bates, S., Amornrrattanapan, P., and Sudbery, P. (2004). In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization. J. Cell. Biol. 164, 581–591.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wankee Kim or Wonja Choi.

About this article

Cite this article

Srinivasa, K., Kim, J., Yee, S. et al. A MAP kinase pathway is implicated in the pseudohyphal induction by hydrogen peroxide in Candica albicans . Mol Cells 33, 183–193 (2012). https://doi.org/10.1007/s10059-012-2244-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-2244-y

Keywords

Navigation