Skip to main content
Log in

Solubility and Thermodynamic Properties of Sulfamethazine–Saccharin Cocrystal in Pure and Binary (Acetonitrile + 2-Propanol) Solvents

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

In this work, a new crystallization method was used to prepare two polymorphs of sulfamethazine–saccharin (SMT–SAC) cocrystal in bulk. The purity and crystal form of both polymorphs were confirmed by optical microscopy, scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. Moreover, the solubility of the stable form (form II) was determined by gravimetric analysis in nine pure solvents and one binary (acetonitrile + 2-propanol) solvent at temperatures ranging from 278.15 to 348.15 K at atmospheric pressure. Experimental data were correlated using the modified Apelblat model, the λh equation, the nonrandom two-liquid (NRTL) model, the Jouyban–Acree model, and the CNIBS/Redlich–Kister model. Finally, the apparent thermodynamic properties, such as \(\Delta_{\text{dis}} G\), ΔdisH, and ΔdisS, were calculated on the basis of the activity coefficient obtained by the NRTL model. All the models correlate well, and all the experimental and calculated results indicate that the dissolution behavior of SMT–SAC cocrystal form II is a spontaneous, endothermic, and entropy-driven process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aitipamula S, Banerjee R, Bansal AK et al (2012) Polymorphs, salts, and cocrystals: what’s in a name? Cryst Growth Des 12(5):2147–2152

    Article  Google Scholar 

  2. Castro RAE, Maria TMR, Évora AOL et al (2010) A new insight into pyrazinamide polymorphic forms and their thermodynamic relationships. Cryst Growth Des 10(1):274–282

    Article  Google Scholar 

  3. Pan BC, Dang LP, Wang ZZ et al (2018) Preparation, crystal structure and solution-mediated phase transformation of a novel solid-state form of CL-20. CrystEngComm 20(11):1553–1563

    Article  Google Scholar 

  4. Pan BC, Wei HY, Jiang J et al (2018) Solution-mediated polymorphic transformation of CL-20: an approach to prepare purified form ε particles. J Mol Liq 265:216–225

    Article  Google Scholar 

  5. Vippagunta SR, Brittain HG, Grant DJW (2001) Crystalline solids. Adv Drug Deliv Rev 48(1):3–26

    Article  Google Scholar 

  6. Zong SH, Pan BC, Dang LP et al (2019) Stability, solubility and thermodynamic properties of dimorphs of furosemide-4,4′-bipyridine cocrystals in organic solvents. J Mol Liq 289:111017

    Article  Google Scholar 

  7. Aitipamula S, Chow PS, Tan RBH (2014) Polymorphism in cocrystals: a review and assessment of its significance. CrystEngComm 16(17):3451–3465

    Article  Google Scholar 

  8. Losev EA, Boldyreva EV (2018) A salt or a co-crystal – when crystallization protocol matters. CrystEngComm 20(16):2299–2305

    Article  Google Scholar 

  9. Grobelny P, Mukherjee A, Desiraju GR (2011) Drug-drug co-crystals: temperature-dependent proton mobility in the molecular complex of isoniazid with 4-aminosalicylic acid. CrystEngComm 13(13):4358–4364

    Article  Google Scholar 

  10. Losev EA, Boldyreva E (2019) Concomitant cocrystal and salt: no interconversion in the solid state. Acta Crystallogr C 75(3):313–319

    Article  Google Scholar 

  11. Lu EX, Rodríguez-Hornedo N, Suryanarayanan R (2008) A rapid thermal method for cocrystal screening. CrystEngComm 10(6):665–668

    Article  Google Scholar 

  12. Perumalla SR, Wang CG, Guo YW et al (2019) Robust bulk preparation and characterization of sulfamethazine and saccharine salt and cocrystal polymorphs. CrystEngComm 21(13):2089–2096

    Article  Google Scholar 

  13. Fu X, Li JH, Wang LY et al (2016) Correction: Pharmaceutical crystalline complexes of sulfamethazine with saccharin: same interaction site but different ionization states. RSC Adv 6(62):26474–26478

    Article  Google Scholar 

  14. Pan BC, Wei HY, Zong SH et al (2019) Solid-liquid phase equilibrium and ternary phase diagrams of CL-20 in different solvent systems from 298.15 K to 313.15 K. J Mol Liq 289:111180

    Article  Google Scholar 

  15. Manzurola E, Apelblat A (2002) Solubilities of l-glutamic acid, 3-nitrobenzoic acid, p-toluic acid, calcium-l-lactate, calcium gluconate, magnesium-dl-aspartate, and magnesium-l-lactate in water. J Chem Thermodyn 34(7):1127–1136

    Article  Google Scholar 

  16. Apelblat A, Manzurola E (1999) Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3, 5-dinitrosalicylic, and p-toluic acid, and magnesium- DL-aspartate in water from T = (278 to 348) K. J Chem Thermodyn 31(1):85–91

    Article  Google Scholar 

  17. Hojjati H, Rohani S (2006) Measurement and prediction of solubility of paracetamol in water–isopropanol solution. Part 1. Measurement and data analysis. Org Process Res Dev 10(6):1101–1109

    Article  Google Scholar 

  18. Buchowski H, Ksiazczak A, Pietrzyk S (1980) Solvent activity along a saturation line and solubility of hydrogen-bonding solids. J Phys Chem 84(9):975–979

    Article  Google Scholar 

  19. Renon H, Prausnitz JM (1968) Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J 14(1):135–144

    Article  Google Scholar 

  20. Gow AS (1993) Calculation of vapor-liquid equilibria from infinite-dilution excess enthalpy data using the Wilson or NRTL equation. Ind Eng Chem Res 32(12):3150–3161

    Article  Google Scholar 

  21. Wang S, Chen YF, Gong TT et al (2019) Solid-liquid equilibrium behavior and thermodynamic analysis of dipyridamole in pure and binary solvents from 293.15 K to 328.15 K. J Mol Liq 275:8–17

    Article  Google Scholar 

  22. William EA Jr. (1992) Mathematical representation of thermodynamic properties: Part 2 Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixing model. Thermochim Acta 198(1):71–79

    Article  Google Scholar 

  23. Barzegar-Jalali M, Jouyban-Gharamaleki A (1997) A general model from theoretical cosolvency models. Int J Pharm 152(2):247–250

    Article  Google Scholar 

  24. Jouyban-Gharamaleki A, Acree WE Jr. (1998) Comparison of models for describing multiple peaks in solubility profiles. Int J Pharm 167(1–2):177–182

    Article  Google Scholar 

  25. Khattab IS, Bandarkar F, Fakhree MAA et al (2012) Density, viscosity, and surface tension of water + ethanol mixtures from 293 to 323K. Korean J Chem Eng 29(6):812–817

    Article  Google Scholar 

  26. Zong SY, Wang JK, Xiao Y et al (2017) Solubility and dissolution thermodynamic properties of lansoprazole in pure solvents. J Mol Liq 241:399–406

    Article  Google Scholar 

  27. Gu CH, Li H, Gandhi RB et al (2004) Grouping solvents by statistical analysis of solvent property parameters: implication to polymorph screening. Int J Pharm 283(1–2):117–125

    Article  Google Scholar 

  28. Jouyban A (2008) Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. J Pharm Pharm Sci 11(1):32–58

    Article  Google Scholar 

  29. Millard JW, Alvarez-Núñez FA, Yalkowsky SH (2002) Solubilization by cosolvents: establishing useful constants for the log–linear model. Int J Pharm 245(1–2):153–166

    Article  Google Scholar 

  30. Grunenberg A, Henck JO, Siesler HW (1996) Theoretical derivation and practical application of energy/temperature diagrams as an instrument in preformulation studies of polymorphic drug substances. Int J Pharm 129(1–2):147–158

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 21676196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leping Dang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Gao, N. & Dang, L. Solubility and Thermodynamic Properties of Sulfamethazine–Saccharin Cocrystal in Pure and Binary (Acetonitrile + 2-Propanol) Solvents. Trans. Tianjin Univ. 27, 460–472 (2021). https://doi.org/10.1007/s12209-020-00255-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-020-00255-7

Keywords

Navigation