Skip to main content
Log in

Unsteady computation of flow field and convective heat transfer over tandem cylinders at subcritical Reynolds numbers

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Unsteady flow and convective heat transfer over single and two tandem cylinders at constant-heat-flux condition in subcritical range of Reynolds number was numerically investigated. Two-dimensional computations were performed by adopting 3-equation k-kl-ω turbulence model using a commercial software FLUENT®. The aim was to investigate the capabilities of k-kl-ω turbulence model for collective flow and heat transport conditions past cylindrical bodies and then to identify a critical spacing ratio for the maximum heat transport. The center-to-center spacing ratio (L/D) was varied in the range from 1.2 to 4.0. Instantaneous path lines and vorticity contours were generated to interpret the interaction of shear layer and vortices from upstream cylinder with the downstream cylinder. Comparison of pressure coefficients, fluctuating and average lift as well as drag coefficients, Strouhal number and the local and average Nusselt numbers with the available literatures indicated a reasonably good agreement. The combined outcome of flow field and heat transfer study revealed a critical spacing ratio of L/D = 2.2. Based on the present investigation, a correlation has been suggested to calculate overall average Nusselt number of the two cylinders placed in tandem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Sumer, Hydrodynamics around cylindrical structures, World Scientific, Singapore (1997).

    Book  MATH  Google Scholar 

  2. M. M. Zdravkovich, Flow around circular cylinders, vol 1: fundamentals, Oxford U. Press, London (1997).

    MATH  Google Scholar 

  3. M. M. Zdravkovich, Flow around circular cylinders, vol 2: applications, Oxford U. Press, London (2003).

    MATH  Google Scholar 

  4. R. J. Goldstein, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H. Kuehn, P. J. Strykowski, K. K. Tamma, J. V. R. Heberlein, J. H. Davidson, J. Bischof, F. A. Kulacki, U. Kortshagen, S. Garrick, V. Srinivasan, K. Ghosh and R. Mittal, Heat Transfer-A review of 2005 literature, Int. J. of Heat and Mass Transfer, 53 (2010) 4397–4447.

    Article  MATH  Google Scholar 

  5. A. Kondjoyan and H. C. Boisson, Comparison of calculated and experimental heat transfer coefficients at the surface of circular cylinders placed in a turbulent cross-flow of air, J. of Food Engineering, 34 (1997) 123–143.

    Article  Google Scholar 

  6. K. Szczepanik, A. Ooi, L. Aye and G. Rosengarten, A numerical study of heat transfer from a cylinder in cross flow, Proc. of 15th Australasian Fluid Mechanics Conference, Sydney, Australia (2004).

    Google Scholar 

  7. B. A. Younis, M. C. Banica and B. Weigand, Prediction of vortex shedding with heat transfer, Numerical Heat Transfer, Part A, 48 (2005) 1–19.

    Google Scholar 

  8. Md. M. Rahman, Md. M. Karim and Md. A. Alim, Numerical investigation of unsteady flow past a circular cylinder using 2-d finite volume method, J. of Naval Architecture and Marine Engineering, 4 (2007) 27–42.

    Google Scholar 

  9. S. Mittal, V. Kumar and A. Raghuvanshi, Unsteady incompressible flows past two cylinders in tandem and staggered arrangements, Int. J. for Numerical Methods in Fluids, 25 (1997) 1315–1344.

    Article  MATH  Google Scholar 

  10. J. R. Meneghini, F. Saltara, C. L. R. Siqueira and J. A. Ferrari Jr., Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements, J. of Fluids and Structures, 15 (2001) 327–350.

    Article  Google Scholar 

  11. W. Jester and Y. Kallinderis, Numerical study of incompressible flow about fixed cylinder pairs, J. of Fluids and Structures, 17 (2003) 561–577.

    Article  Google Scholar 

  12. B. S. Carmo, J. R. Meneghini and S. J. Sherwin, Secondary instabilities in the flow around two circular cylinders in tandem, J. of Fluid Mech., 644 (2010) 395–431.

    Article  MATH  Google Scholar 

  13. R. Jiang, J. Lin and X. Ku, Numerical predictions of flows past two tandem cylinders of different diameters under unconfined and confined flows, Fluid Dyn. Res., 46 (2014) 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Chen, Z. Zheng, Z. Chen and T. B. Xiaotao, Simulation of flow and heat transfer around a heated stationary circular cylinder by lattice gas automata, Powder Technology, 290 (2016) 72–82.

    Article  Google Scholar 

  15. S. U. Islam and C. Y. Zhou, Numerical simulation of flow around a row of circular cylinders using the lattice Boltzmann method, Information Technology Journal, 8 (2009) 513–520.

    Article  Google Scholar 

  16. S. U. Islam, C. Y. Zhou and A. Farooq, Numerical simulations of cross-flow around four square cylinders in an in-line rectangular configuration, Int. J. of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 3 (9) (2009) 1138–1147.

    Google Scholar 

  17. G. Juncu, A numerical study of momentum and forced convection heat transfer around two tandem circular cylinders at low Reynolds numbers Part II: Forced convection heat transfer, Int. J. of Heat and Mass Transfer, 50 (2007) 3799–3808.

    Article  MATH  Google Scholar 

  18. N. Mahir and Z. Altac, Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements, Int. J. of Heat and Fluid Flow, 29 (2009) 1309–1318.

    Article  Google Scholar 

  19. S. Jayawel and S. Tiwari, Numerical investigation of incompressible flow past circular tubes in confined channel, CFD Letters, 1 (1) (2009) 1–14.

    Google Scholar 

  20. I. Harimi and M. Saghafian, Numerical simulation of fluid flow and forced convection heat transfer from tandem circular cylinders using overset grid method, J. of Fluids and Structures, 28 (2012) 309–327.

    Article  Google Scholar 

  21. D. Lee, J. Ahn and S. Shin, Uneven longitudinal pitch effect on tube bank heat transfer in cross flow, Applied Thermal Engineering, 51 (2013) 937–947.

    Article  Google Scholar 

  22. T. Igarashi, Characteristics of flow around two circular cylinders arranged in tandem, Bulletin of JSME, 24 (188) (1981) 323–331.

    Article  Google Scholar 

  23. Md. M. Alam, M. Moriya, K. Takai and H. Sakamoto, Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number, J. Wind Eng. Ind. Aerodyn., 91 (2003) 139–154.

    Article  Google Scholar 

  24. T. Kitagawa and H. Ohta, Numerical investigation on flow around circular cylinders in tandem arrangement at a subcritical Reynolds number, J. of Fluids and Structures, 24 (2008) 680–699.

    Article  Google Scholar 

  25. Z. G. Kostic and S. N. Oka, Fluid flow and heat transfer with two cylinders in cross flow, Int. J. of Heat and Mass Transfer, 15 (2) (1972) 279–282.

    Article  Google Scholar 

  26. T. Igarashi and H. Yamasaki, Fluid flow and transfer around two circular cylinders arranged in tandem, Proc. of 2nd JSME-KSME Thermal Engineering Conf. (1992) 7–12.

    Google Scholar 

  27. E. Buyruk, Heat transfer and flow structures around circular cylinders in cross-flow, Tr. J. Engineering and Environmental Science, 23 (1999) 299–315.

    Google Scholar 

  28. A. Daloglu and A. Unal, Heat Transfer from a cylinder in wake flow, Int. Comm. Heat Mass Transfer, 27 (4) (2000) 569–580.

    Article  Google Scholar 

  29. T. Tsutsui and T. Igarashi, Heat transfer enhancement of a circular cylinder, ASME J. Heat Transfer, 128 (2006) 226–233.

    Article  Google Scholar 

  30. J. H. Lin, C. -K. Chen and Y.-T. Yang, An inverse method for simultaneous estimation of the center and surface thermal behavior of a heated cylinder normal to a turbulent air stream, ASME J. Heat Transfer, 124 (2002) 601–608.

    Article  Google Scholar 

  31. E. Coment, T. Loulou and D. Maillet, Estimation of local heat transfer coefficient on a cylinder: comparison between an analytical and an optimization method, Inverse Problems in Science and Engineering, 13 (5) (2005) 449–467.

    Article  MathSciNet  MATH  Google Scholar 

  32. C.-K. Chen, L.-W. Wu and Y.-T. Yang, Application of the inverse method to the estimation of heat flux and temperature on the external surface in laminar pipe flow, Appl. Therm. Eng., 26 (2006) 1714–1724.

    Article  Google Scholar 

  33. H.-T. Chen, J. C. Chou and H. C. Wang, Estimation of heat transfer coefficient on a vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacing, Int. J. Heat Mass Transfer, 50 (2007) 45–57.

    Article  MATH  Google Scholar 

  34. H.-T. Chen and W.-L. Hsu, Estimation of heat transfer coefficient on the fin of annular finned-tube heat exchangers in natural convection for various fin spacings, Int. J. Heat Mass Transfer, 50 (2007) 1750–1761.

    Article  MATH  Google Scholar 

  35. H.-T. Chen and W.-L. Hsu, Estimation of heat transfer characteristics on a vertical annular circular fin of finnedtube heat exchangers in forced convection, Int. J. Heat Mass Transfer, 51 (2008) 1920–1932.

    Article  MATH  Google Scholar 

  36. J. Taler, Determination of local heat transfer coefficient from the solution of the inverse heat conduction problem, Forsch Ingenieurwes, 71 (2007) 69–78.

    Article  Google Scholar 

  37. E. E. M. Olsson, H. Janestad, L. M. Ahrne, A. C. Tragardh and R. P. Singh, Determination of local heat-transfer coefficients around a circular cylinder under an impinging air jet, Int. J. of Food Properties, 11 (2008) 600–612.

    Article  Google Scholar 

  38. A. H. Benmachiche, C. Bougriou and S. Abboudi, Inverse determination of the heat transfer characteristics on a circular plane fin in a finned-tube bundle, Int. J. of Heat Mass Transfer, 46 (2010) 1367–1377.

    Article  Google Scholar 

  39. W. L. Chen, Estimation of heat flux on the surface of an initially hot cylinder cooled by a laminar confined impinging jet, Int. J. of Heat and Mass Transfer, 55 (2012) 597–606.

    Article  MATH  Google Scholar 

  40. W. Linke, New measurements on aerodynamics of cylinders particularly their friction resistance (in German), Physikalische Zeitschrift, 38 (1931) 476–98 (Courtesy:[2]).

    Google Scholar 

  41. M. S. Macovsky, Vortex-Induced vibration studies, Report No. 1190, Navy Department, David Tayler Model Basin, Hydromechanics Laboratory, July (1958).

    Google Scholar 

  42. H. C. Perkins and G. Leppert, Forced convection heat transfer from a uniformly heated cylinder, J. of Heat Transfer, 84 (1962) 257–263.

    Article  Google Scholar 

  43. H. C. Perkins and G. Leppert, Local heat-transfer coefficients on a uniformly heated cylinder, Int. J. Heat Mass Transfer, 7 (1964) 143–158.

    Article  Google Scholar 

  44. R. M. Fand, Heat transfer by forced convection from a cylinder to water in crossflow, Int. J. of Heat Mass Transfer, 8 (1965) 995–1010.

    Article  Google Scholar 

  45. A. A. Zukauskas, Heat transfer from tubes in cross-flow, Adv. Heat Transfer, 8 (1972) 93–160.

    Article  Google Scholar 

  46. T. Igarashi and M. Hirata, Heat transfer in separated flows Part 2: Theoretical Analysis, Heat Transfer-Jpn Res., 6 (3) (1977) 60–78.

    Google Scholar 

  47. S. Yokuda and B. R. Ramaprian, The dynamics of flow around a cylinder at subcritical Reynolds numbers, Phys. Fluids A, 2 (5) (1990) 784–791.

    Article  Google Scholar 

  48. L. Ljungkrona, C. H. Norberg and B. Sunde´n, Free-stream turbulence and tube spacing effects on surface pressure fluctuations for two tubes in an in-line arrangement, J. of Fluids and Structures, 5 (1991) 701–727.

    Article  Google Scholar 

  49. J. W. Scholten and D. B. Murray, Unsteady heat transfer and velocity of a cylinder in cross flow-I. Low free stream turbulence, In. J. Heat Mass Transfer, 41 (100) (1998) 1139–1148.

    Article  Google Scholar 

  50. S. Ozono, J. Oda, Y. Yoshida and Y. Wakasugi, Critical nature of the base pressure of the upstream circular cylinder in two staggered ones in cross-flow, Theoretical and Applied Mechanics, 50 (2001) 335–340.

    Google Scholar 

  51. S. Sanitjai and R. J. Goldstein, Heat transfer from a circular cylinder to mixtures of water and ethylene glycol, Int. J. Heat Mass Transfer, 47 (2004) 4795–4805.

    Article  Google Scholar 

  52. H. Nakamura and T. Igarashi, Unsteady heat transfer from a circular cylinder for Reynolds numbers from 3000 to 15,000, Int. J. of Heat and Fluid Flow, 25 (2004) 741–748.

    Article  Google Scholar 

  53. S. Dong, G. E. Karniadakis, A. Ekmekci and D. Rockwell, A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake, J. Fluid Mech., 569 (2006) 185–207.

    Article  MATH  Google Scholar 

  54. T. Kitagawa and H. Ohta, Numerical investigation on flow around circular cylinders in tandem arrangement at a subcritical Reynolds number, J. of Fluids and Structures, 24 (2008) 680–699.

    Article  Google Scholar 

  55. ANSYS, Inc., Fluent 14.0, ANSYSFLUENT Theory Guide, (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Dhiman.

Additional information

Recommended by Associate Editor Donghyun You

S. K. Dhiman received his B.E. in Mechanical Engineering, Government Engineering College, Rani Durgavati University, Jabalpur (India) and M.Tech. in Thermal Engineering, Maulana Azad National Institute of Technology, Bhopal (India). He is an Assistant Professor of Mechanical Engineering at Birla Institute of Technology, Mesra, Ranchi (India). His principal domain of research is fluid mechanics and heat transfer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, S.K., Kumar, A. & Prasad, J.K. Unsteady computation of flow field and convective heat transfer over tandem cylinders at subcritical Reynolds numbers. J Mech Sci Technol 31, 1241–1257 (2017). https://doi.org/10.1007/s12206-017-0223-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-017-0223-0

Keywords

Navigation