Skip to main content
Log in

Flow and heat transfer analysis around tandem cylinders: critical gap ratio and thermal cross-buoyancy

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The focus of the current numerical investigation is to study the fluid flow and mixed convective (thermal cross-buoyancy) heat transfer of incompressible fluid across identical cylinders organized in a confined tandem configuration because of their enormous engineering and industrial applications such as heat exchange tubes, electronic cooling, twin chimney stacks, cooling tower, etc. The involved flow and energy equations are solved for different gap ratios (S/D = 2.5, 3, 3.5, 4, 5, and 5.5) with varying Richardson number (Ri = 0, 0.5, and 1) at Reynolds number Re = 100, Prandtl number Pr = 0.7 and wall confinement β = 25% by using a finite volume method-based commercial solver ANSYS Fluent. It is found that after a certain gap ratio there is a drastic change in the physical parameters and after that gap ratio the change is gradual; this gap ratio is termed as a critical gap ratio. The introduction of thermal cross-buoyancy (Ri > 0) plays a deep impact on the physical parameters, and it is to be noted that the critical spacing shifts towards a lower value with increasing Ri. The analysis of lift coefficients shows that the fluctuations in lift signal shift from zero average value at Ri = 0 towards the nonzero negative average value for the tandem cylinders at Ri > 0. The local Nusselt number shows the shift in the front stagnation point on both cylinders with increasing thermal cross-buoyancy. The drag coefficient and Nusselt number of the downstream cylinder are always less than the upstream cylinder, but the percentage increment in the physical parameters of the downstream cylinder after critical spacing is much more than its upstream counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

C D :

Drag coefficient

C L :

Lift coefficient

C P :

Fluid specific heat (J/kg K)

D :

Cylinder diameter (m)

f :

Vortex shedding frequency (Hz)

g :

Acceleration due to gravity (m/s2)

Gr :

Grashof number \( \left( {\frac{{g\beta_{v} \left( {T_{w} - T_{\infty } } \right)D^{3} }}{{\eta^{2} }}} \right) \)

h Φ :

Local coefficient of heat transfer (W/m2 K)

H :

Vertical length of channel (m)

k :

Thermal conductivity of fluid (W/mK)

L :

Horizontal length of channel (m)

n :

Direction normal to cylinder surface

Nu Φ :

Local Nusselt number

P :

Dimensionless pressure \( \left( {\frac{{\bar{p}}}{{\rho U_{\text{avg}}^{2} }}} \right) \)

Pr :

Prandtl number \( \left( {\frac{{\mu C_{P} }}{k}} \right) \)

Re :

Reynolds number \( \left( {\frac{{U_{\text{avg}} D}}{\eta }} \right) \)

Ri :

Richardson number \( \left( {\frac{Gr}{{Re^{2} }}} \right) \)

S :

Spacing between cylinders (m)

St :

Strouhal number \( \left( {\frac{fD}{{U_{\text{avg}} }}} \right) \)

t :

Dimensionless time \( \left( {\frac{{U_{\text{avg}} \mathop t\limits^{\_} }}{D}} \right) \)

T :

Temperature (K)

T w :

Temperature of cylinders (K)

T :

Temperature of inlet stream (K)

U avg :

Average inlet velocity of fluid (m/s)

U x :

Dimensionless velocity in x-direction \( \left( {\frac{{\bar{u}_{x} }}{{U_{\text{avg}} }}} \right) \)

U y :

Dimensionless velocity in y-direction \( \left( {\frac{{\bar{u}_{y} }}{{U_{\text{avg}} }}} \right) \)

X :

Dimensionless distance in x-direction \( \left( {\frac{x}{D}} \right) \)

X D :

Downstream distance of channel (m)

X U :

Upstream distance of channel (m)

Y :

Dimensionless distance in y-direction \( \left( {\frac{y}{D}} \right) \)

β :

Blockage ratio (D/H)

β v :

Volumetric expansion coefficient (K−1)

δ :

Smallest grid size (m)

η :

Kinematic viscosity of fluid (m2/s)

θ :

Dimensional temperature

μ :

Viscosity of fluid (Ns/m2)

ρ :

Density of fluid (kg/m3)

Φ :

Polar angle (°)

−:

Dimensional quantity

w:

Surface of cylinders

:

Inlet stream

1:

Upstream cylinder

2:

Downstream cylinder

References

  1. Biermann D, Herrnstein Jr. (1933) The interference between struts in various combinations. National Advisory Committee for Aeronautics, Technical Report 468

  2. Ishigai S, Nishikawa E, Nishimura K, Cho K (1972) Experimental study on structure of gas flow in tube banks with tube axes normal to flow. Bull JSME 15:949

    Article  Google Scholar 

  3. Kostic ZG, Oka SN (1972) Fluid flow and heat transfer with two circular cylinders in cross flow. Int J Heat Mass Trans 15:279

    Article  Google Scholar 

  4. Tanida Y, Okajima A, Watanabe Y (1973) Stability of circular cylinder oscillating in uniform or in wake. J Fluid Mech 61:769

    Article  Google Scholar 

  5. Okajima A (1979) Flow around two tandem circular cylinders at very high Reynolds numbers. Bull JSME 22:504

    Article  Google Scholar 

  6. Zdravkovich MM (1977) Review of flow interference between two circular cylinder in various arrangement. J Fluids Eng 96:618

    Article  Google Scholar 

  7. Zdravkovich MM (1987) The effects of interference between circular cylinders in cross flow. J Fluids Struct 1:239

    Article  Google Scholar 

  8. Igarashi T (1981) Characteristics of the flow around two circular cylinders arranged in tandem (first report). Bull JSME 24:323

    Article  Google Scholar 

  9. Igarashi T (1984) Characteristics of the flow around two circular cylinders arranged in tandem (second report). Bull JSME 27:2380

    Article  Google Scholar 

  10. Hiwada M, Mabuchi I, Yanagihara H (1982) Fluid flow and heat transfer around two circular cylinders. Bull JSME 25:1737

    Article  Google Scholar 

  11. Arie M, Kiya M, Moriya M, Mori H (1983) Pressure fluctuations of the surface of two circular cylinders in tandem arrangement. J Fluids Eng 105:161

    Article  Google Scholar 

  12. Sumner D (2010) Two circular cylinders in cross-flow: a review. J Fluids Struct 26:849

    Article  Google Scholar 

  13. Sumner D, Price SJ, Paidoussis MP (1999) Tandem cylinders in impulsively started flow. J Fluids Struct 13:955

    Article  Google Scholar 

  14. Alam MM, Moriya M, Takai K, Sakamoto H (2003) Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number. J Wind Eng Ind Aero 91:139

    Article  Google Scholar 

  15. Salcedo E, Trevino C, Morales CP, Zenit R, Suastegui LM (2017) Experimental study on laminar flow over two confined isothermal cylinders in tandem during mixed convection. Int J Therm Sci 115:176

    Article  Google Scholar 

  16. Mittal S, Kumar V, Raghuvanshi A (1997) Unsteady incompressible flows past two cylinders in tandem and staggered arrangements. Int J Numer Methods Fluids 25:1315

    Article  MATH  Google Scholar 

  17. Mizushima J, Suehiro N (2005) Instability and transition of flow past two tandem circular cylinders. Phys Fluids 17:104107

    Article  MATH  Google Scholar 

  18. Sharman B, Lien FS, Davidson L, Norberg C (2005) Numerical predictions of low Reynolds number flows over two tandem circular cylinders. Int J Numer Methods Fluids 47:423

    Article  MATH  Google Scholar 

  19. Mahir N, Altac Z (2008) Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangement. Int J Heat Fluid Flow 29:1309

    Article  Google Scholar 

  20. Carmo BS, Meneghini JR, Sherwin SJ (2010) Possible states in the flow around two circular cylinders in tandem with separation in the vicinity of drag inversion spacing. Phys Fluids 22:54101

    Article  MATH  Google Scholar 

  21. Carmo BS, Meneghini JR, Sherwin SJ (2010) Secondary instabilities in the flow around two circular cylinders in tandem. J Fluid Mech 644:395

    Article  MATH  Google Scholar 

  22. Chatterjee D, Gupta K, Kumar V, Varghese SA (2017) Rotation induced flow suppression around two tandem circular cylinders at low Reynolds number. Fluid Dyn Res 49:045503

    Article  MathSciNet  Google Scholar 

  23. Chatterjee D, Mondal B (2012) Forced convection heat transfer from tandem square cylinders for various spacing ratios. Numer Heat Transf Part A 61:381

    Article  Google Scholar 

  24. Chatterjee D, Mondal B (2013) Mixed convection heat transfer from tandem square cylinders for various gap to size ratios. Num. Heat Transf Part A 63:101

    Article  Google Scholar 

  25. Chatterjee D, Mondal B (2013) Unsteady mixed convection heat transfer from tandem square cylinders in cross flow at low Reynolds numbers. Heat Mass Transf 49:907

    Article  Google Scholar 

  26. Chatterjee D, Amiroudine S (2010) Two-dimensional mixed convection heat transfer from confined tandem square cylinders in cross-flow at low Reynolds numbers. Int Commun Heat Mass Transf 37:7

    Article  Google Scholar 

  27. Chatterjee D, Biswas G (2011) Effects of Reynolds and Prandtl numbers on flow and heat transfer across tandem square cylinders in the steady flow regime. Numer Heat Transf Part A 59:421

    Article  Google Scholar 

  28. Salcedo E, Cajas JC, Trevino C, Suastegui LM (2016) Unsteady mixed convection heat transfer from two confined isothermal circular cylinders in tandem: Buoyancy and tube spacing effects. Int J Heat Fluid Flow 60:12

    Article  Google Scholar 

  29. Salcedo E, Cajas JC, Trevino C, Suastegui LM (2017) Numerical investigation of mixed convection heat transfer from two isothermal circular cylinders in tandem arrangement: buoyancy, spacing ratio, and confinement effects. Theor Comput Fluid Dyn 31:159

    Article  Google Scholar 

  30. Kondo N, Matsukuma D (2005) Numerical simulation for flow around two circular cylinders in tandem. Int J Comput Fluid Dyn 19:277

    Article  MATH  Google Scholar 

  31. Zhou Y, Yiu MW (2006) Flow structure, momentum and heat transport in a two-tandem-cylinder wake. J Fluid Mech 548:17

    Article  Google Scholar 

  32. Buyruk E (2002) Numerical study of heat transfer characteristics on tandem cylinders, inline and staggered tube banks in cross-flow of air. Int Commun Heat Mass Transf 29:355

    Article  Google Scholar 

  33. Wu YL (2017) Numerical simulation of flow past multiple cylinders using the hybrid local domain free discretization and immersed boundary method. Ocean Eng 141:477

    Article  Google Scholar 

  34. Barros GM, Lorenzini G, Isoldi LA, Rocha LAO, Santos ED (2017) Influence of mixed convection laminar flows on the geometrical evaluation of a triangular arrangement of circular cylinders. Int J Heat Mass Transf 114:1188

    Article  Google Scholar 

  35. Sunakraneni S, Puliyeri V, Prakash AK (2018) Fluid flow and heat transfer characteristics past two tandem elliptic cylinders: a numerical study. J Enhanc Heat Transf 25:421

    Article  Google Scholar 

  36. Simenthy R, Raghavan V, Tiwari S (2018) On dynamic and energy transfer characteristics of flow past transversely oscillating circular cylinder in the wake of stationary cylinder. Int J Fluid Mech Res 45:509

    Article  Google Scholar 

  37. Bijjam S, Dhiman AK (2012) CFD analysis of two-dimensional non-Newtonian power-law flow across a circular cylinder in a channel. Chem. Eng. Comm. 199:767

    Article  Google Scholar 

  38. Bharti RP, Chhabra RP, Eswaran V (2007) Two-dimensional steady Poiseuille flow of power-law fluids across a circular cylinder in a plane confined channel: Wall effects and drag coefficients. Ind Eng Chem Res 46:382

    Article  Google Scholar 

  39. Dhiman AK, Chhabra RP, Eswaran V (2008) Steady flow across a confined square cylinder: effect of power-law index and of blockage ratio. J Non-Newtonian Fluid Mech 148:141

    Article  MATH  Google Scholar 

  40. Chatterjee D (2010) Mixed convection heat transfer from tandem square cylinders in a vertical channel at low Reynolds numbers. Numer Heat Transf Part A 58:740

    Article  Google Scholar 

  41. Agarwal R, Dhiman A (2014) Flow and heat transfer phenomena across two confined tandem heated triangular bluff bodies. Numer Heat Transf Part A 69:1020

    Article  Google Scholar 

  42. Patanker SV (1980) Numerical heat transfer and fluid flow. Hemisphere, Washington DC

    Google Scholar 

  43. Sanyal A, Dhiman A (2017) Wake interactions in a fluid flow past a pair of side-by-side square cylinders in presence of mixed convection. Phys Fluids 29:103602

    Article  Google Scholar 

  44. Sanyal A, Dhiman A (2018) Effect of thermal buoyancy on a fluid flowing past a pair of side-by-side square bluff-bodies in a low-Reynolds number flow regimes. Phys Fluids 30:063603

    Article  Google Scholar 

  45. Mettu S, Verma N, Chhabra RP (2006) Momentum and heat transfer from an asymmetrically confined circular cylinder in a plane channel. Heat Mass Transf 42:1037

    Article  Google Scholar 

  46. Meneghini JR, Saltara F, Siqueira CLR, Ferrari JA (2001) Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. J Fluids Struct 15:327

    Article  Google Scholar 

  47. Ding H, Shu C, Yeo YO, Xu D (2007) Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods. Int J Numer Meth Fluids 53:305

    Article  MATH  Google Scholar 

  48. Liu C, Zheng X, Sung CH (1998) Preconditioned multigrid methods for unsteady incompressible flows. J Comput Phys 139:35

    Article  MATH  Google Scholar 

  49. Braza M, Chassaing P, Ha Minh H (1986) Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J Fluid Mech 165:79

    Article  MathSciNet  MATH  Google Scholar 

  50. Harichandan AB, Roy A (2012) Numerical investigation of flow past single and tandem cylindrical bodies in the vicinity of a plane wall. J Fluids Struct 33:19

    Article  Google Scholar 

  51. Harimi I, Saghafian M (2012) Numerical simulation of fluid flow and forced convection heat transfer from tandem circular cylinders using overset grid method. J Fluids Struct 28:309

    Article  Google Scholar 

  52. Churchill SW, Bernstein MJ (1977) A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow. J Heat Transf 99:300

    Article  Google Scholar 

  53. Patnana VK, Bharti RP, Chhabra RP (2010) Two-dimensional unsteady forced convection heat transfer in power-law fluids from a cylinder. Int J Heat Mass Transf 53:4152

    Article  MATH  Google Scholar 

  54. Xu G, Zhou Y (2004) Strouhal number in the wake of two inline cylinders. Exp Fluids 37:248

    Article  Google Scholar 

  55. Ajith Kumar S, Mathur M, Sameer A, Lal SA (2016) Effect of Prandtl number on the laminar cross flow past a heated cylinder. Phys Fluids 28:113603

    Article  Google Scholar 

  56. Asif M, Dhiman A (2018) Analysis of laminar flow across a triangular periodic array of heated cylinders. J Braz Soc Mech Sci Eng 40:350

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Dhiman.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest statement.

Additional information

Technical Editor: Daniel Onofre de Almeida Cruz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, A.R., Dhiman, A.K. Flow and heat transfer analysis around tandem cylinders: critical gap ratio and thermal cross-buoyancy. J Braz. Soc. Mech. Sci. Eng. 41, 487 (2019). https://doi.org/10.1007/s40430-019-1980-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1980-8

Keywords

Navigation