Skip to main content
Log in

Proteomic Analysis of the Pericyte Derived Extracellular Matrix

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Pericytes (PC) line the post capillary venules and deposit extracellular matrix (ECM) proteins that provide vascular integrity during angiogenesis and regulatory signals during inflammation. Here we describe the characterization of soluble and structural ECM proteins that are deposited by PC. ECM components in PC-derived ECM were qualitatively and quantitatively analyzed via liquid chromatography/tandem mass spectrometry LC/MS–MS, while Western blot analysis was used to confirm the presence of commonly investigated matrix proteins. Functional annotation was used to categorize specific types of proteins, including structural collagens, glycoproteins, proteoglycans, ancillary angiogenic and inflammatory proteins. Further, the functional ability of PC derived ECM to support endothelial cell tubule formation, neutrophil adhesion, polarization and chemotaxis were evaluated. Our findings indicate that PC ECM is compositionally distinct to smooth muscle cell (SMC) ECM, and functionally supports vasculogenesis and neutrophil adhesion as well as SMC ECM. While differences in neutrophil polarization and cell ruffling were seen between PC ECM and SMC ECM adherent neutrophils, no difference in migratory velocities were observed. This first characterization of PC derived ECM provides insight into its potential use as a component of implantable engineered scaffolds and for investigations of basic cellular response to the microvascular basement membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

PC:

Pericytes

SMC:

Smooth muscle cells

TEVG:

Tissue engineered vascular grafts

EGF:

Epidermal growth factor

PDGF-B:

Platelet-derived growth factor subunit B

MMP:

Matrix metalloproteinase

fMLP:

Formyl-Met-Leu-Phe

ICAM-1:

Intercellular adhesion molecule-1

VCAM-1:

Vascular cell adhesion molecule-1

PECAM:

Platelet endothelial cell adhesion molecule

VE cadherin:

Vascular endothelial cadherin

References

  1. Ayres-Sander, C. E., H. Lauridsen, C. L. Maier, P. Sava, J. S. Pober, and A. L. Gonzalez. Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes. PLoS ONE 8:e60025, 2013.

    Article  Google Scholar 

  2. Boudaoud, A., A. Burian, D. Borowska-Wykret, M. Uyttewaal, R. Wrzalik, D. Kwiatkowska, and O. Hamant. FibrilTool, an ImageJ plug-into quantify fibrillar structures in raw microscopy images. Nat. Protoc. 9:457–463, 2014.

    Article  Google Scholar 

  3. Cao, G., R. C. Savani, M. Fehrenbach, C. Lyons, L. Zhang, G. Coukos, and H. M. Delisser. Involvement of endothelial CD44 during in vivo angiogenesis. Am. J. Pathol. 169:325–336, 2006.

    Article  Google Scholar 

  4. Chang, W. G., J. W. Andrejecsk, M. S. Kluger, W. M. Saltzman, and J. S. Pober. Pericytes modulate endothelial sprouting. Cardiovasc. Res. 100:492–500, 2013.

    Article  Google Scholar 

  5. da Huang, W., B. T. Sherman, and R. A. Lempicki. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4:44–57, 2009.

    Article  Google Scholar 

  6. Dahl, S. L., A. P. Kypson, J. H. Lawson, J. L. Blum, J. T. Strader, Y. Li, R. J. Manson, W. E. Tente, L. DiBernardo, M. T. Hensley, R. Carter, T. P. Williams, H. L. Prichard, M. S. Dey, K. G. Begelman, and L. E. Niklason. Readily available tissue-engineered vascular grafts. Sci. Transl. Med. 3:68ra69, 2011.

  7. Davis, G. E., and D. R. Senger. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97:1093–1107, 2005.

    Article  Google Scholar 

  8. Decaris, M. L., M. Gatmaitan, S. FlorCruz, F. Luo, K. Li, W. E. Holmes, M. K. Hellerstein, S. M. Turner, and C. L. Emson. Proteomic analysis of altered extracellular matrix turnover in bleomycin-induced pulmonary fibrosis. Mol. Cell. Proteomics: MCP 13:1741–1752, 2014.

    Article  Google Scholar 

  9. Ehrengruber, M. U., D. A. Deranleau, and T. D. Coates. Shape oscillations of human neutrophil leukocytes: characterization and relationship to cell motility. J. Exp. Biol. 199:741–747, 1996.

    Google Scholar 

  10. Faulk, D. M., S. A. Johnson, L. Zhang, and S. F. Badylak. Role of the extracellular matrix in whole organ engineering. J. Cell. Physiol. 229:984–989, 2014.

    Article  Google Scholar 

  11. Gonzalez, A. L., W. El-Bjeirami, J. L. West, L. V. McIntire, and C. W. Smith. Transendothelial migration enhances integrin-dependent human neutrophil chemokinesis. J. Leukoc. Biol. 81:686–695, 2007.

    Article  Google Scholar 

  12. Gonzalez, A. L., A. S. Gobin, J. L. West, L. V. McIntire, and C. W. Smith. Integrin interactions with immobilized peptides in polyethylene glycol diacrylate hydrogels. Tissue Eng. 10:1775–1786, 2004.

    Article  Google Scholar 

  13. Gotsch, U., E. Borges, R. Bosse, E. Boggemeyer, M. Simon, H. Mossmann, and D. Vestweber. VE-cadherin antibody accelerates neutrophil recruitment in vivo. J. Cell Sci. 110(Pt 5):583–588, 1997.

    Google Scholar 

  14. He, W., A. Nieponice, L. Soletti, Y. Hong, B. Gharaibeh, M. Crisan, A. Usas, B. Peault, J. Huard, W. R. Wagner, and D. A. Vorp. Pericyte-based human tissue engineered vascular grafts. Biomaterials 31:8235–8244, 2010.

    Article  Google Scholar 

  15. Hill, R. C., E. A. Calle, M. Dzieciatkowska, L. E. Niklason, and K. C. Hansen. Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering. Mol. Cell. Proteomics: MCP 14:961–973, 2015.

    Article  Google Scholar 

  16. Hung, C., G. Linn, Y. H. Chow, A. Kobayashi, K. Mittelsteadt, W. A. Altemeier, S. A. Gharib, L. M. Schnapp, and J. S. Duffield. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 188:820–830, 2013.

    Article  Google Scholar 

  17. Iruela-Arispe, M. L., M. Lombardo, H. C. Krutzsch, J. Lawler, and D. D. Roberts. Inhibition of angiogenesis by thrombospondin-1 is mediated by 2 independent regions within the type 1 repeats. Circulation 100:1423–1431, 1999.

    Article  Google Scholar 

  18. Ishihama, Y., Y. Oda, T. Tabata, T. Sato, T. Nagasu, J. Rappsilber, and M. Mann. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics: MCP 4:1265–1272, 2005.

    Article  Google Scholar 

  19. Kim, H. Y., E. A. Skokos, D. J. Myer, P. Agaba, and A. L. Gonzalez. alphabeta integrin regulation of respiratory burst in fibrinogen adherent human neutrophils. Cell. Mol. Bioeng. 7:231–242, 2014.

    Article  Google Scholar 

  20. Lauridsen, H. M., J. S. Pober, and A. L. Gonzalez. A composite model of the human postcapillary venule for investigation of microvascular leukocyte recruitment. FASEB J. 28:1166–1180, 2014.

    Article  Google Scholar 

  21. Ley, K., C. Laudanna, M. I. Cybulsky, and S. Nourshargh. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7:678–689, 2007.

    Article  Google Scholar 

  22. Liu, B., C. J. Goergen, and J. Y. Shao. Effect of temperature on tether extraction, surface protrusion, and cortical tension of human neutrophils. Biophys. J. 93:2923–2933, 2007.

    Article  Google Scholar 

  23. Liu, Y., and D. R. Senger. Matrix-specific activation of Src and Rho initiates capillary morphogenesis of endothelial cells. FASEB J. 18:457–468, 2004.

    Article  Google Scholar 

  24. Maier, C. L., B. R. Shepherd, T. Yi, and J. S. Pober. Explant outgrowth, propagation and characterization of human pericytes. Microcirculation 17:367–380, 2010.

    Google Scholar 

  25. Mansfield, P. J., L. A. Boxer, and S. J. Suchard. Thrombospondin stimulates motility of human neutrophils. J. Cell Biol. 111:3077–3086, 1990.

    Article  Google Scholar 

  26. McAllister, T. N., M. Maruszewski, S. A. Garrido, W. Wystrychowski, N. Dusserre, A. Marini, K. Zagalski, A. Fiorillo, H. Avila, X. Manglano, J. Antonelli, A. Kocher, M. Zembala, L. Cierpka, L. M. de la Fuente, and N. L’Heureux. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373:1440–1446, 2009.

    Article  Google Scholar 

  27. McMahon, M. P., B. Faris, B. L. Wolfe, K. E. Brown, C. A. Pratt, P. Toselli, and C. Franzblau. Aging effects on the elastin composition in the extracellular matrix of cultured rat aortic smooth muscle cells. In Vitro Cell. Dev. Biol. 21:674–680, 1985.

    Article  Google Scholar 

  28. Mitchell, S. L., and L. E. Niklason. Requirements for growing tissue-engineered vascular grafts. Cardiovasc. Pathol. 12:59–64, 2003.

    Article  Google Scholar 

  29. Muller, W. A. Getting leukocytes to the site of inflammation. Vet. Pathol. 50:7–22, 2013.

    Article  Google Scholar 

  30. Pencheva, N., H. Tran, C. Buss, D. Huh, M. Drobnjak, K. Busam, and S. F. Tavazoie. Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 151:1068–1082, 2012.

    Article  Google Scholar 

  31. Pu, K. M., P. Sava, and A. L. Gonzalez. Microvascular targets for anti-fibrotic therapeutics. Yale J. Biol. Med. 86:537–554, 2013.

    Google Scholar 

  32. Roh, J. D., R. Sawh-Martinez, M. P. Brennan, S. M. Jay, L. Devine, D. A. Rao, T. Yi, T. L. Mirensky, A. Nalbandian, B. Udelsman, N. Hibino, T. Shinoka, W. M. Saltzman, E. Snyder, T. R. Kyriakides, J. S. Pober, and C. K. Breuer. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc. Natl. Acad. Sci. U.S.A. 107:4669–4674, 2010.

    Article  Google Scholar 

  33. Sampaio, A. L., G. Zahn, G. Leoni, D. Vossmeyer, C. Christner, J. F. Marshall, and M. Perretti. Inflammation-dependent alpha 5 beta 1 (very late antigen-5) expression on leukocytes reveals a functional role for this integrin in acute peritonitis. J. Leukoc. Biol. 87:877–884, 2010.

    Article  Google Scholar 

  34. Sava, P., I. O. Cook, R. S. Mahal, and A. L. Gonzalez. Human microvascular pericyte basement membrane remodeling regulates neutrophil recruitment. Microcirculation 22:54–67, 2015.

    Article  Google Scholar 

  35. Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671–675, 2012.

    Article  Google Scholar 

  36. Sharma, M. C., and M. Sharma. The role of annexin II in angiogenesis and tumor progression: a potential therapeutic target. Curr. Pharm. Des. 13:3568–3575, 2007.

    Article  Google Scholar 

  37. Simper, D., U. Mayr, C. Urbich, A. Zampetaki, M. Prokopi, A. Didangelos, A. Saje, M. Mueller, U. Benbow, A. C. Newby, R. Apweiler, S. Rahman, S. Dimmeler, Q. Xu, and M. Mayr. Comparative proteomics profiling reveals role of smooth muscle progenitors in extracellular matrix production. Arterioscler. Thromb. Vasc. Biol. 30:1325–1332, 2010.

    Article  Google Scholar 

  38. Sriramarao, P., M. Mendler, and M. A. Bourdon. Endothelial cell attachment and spreading on human tenascin is mediated by alpha 2 beta 1 and alpha v beta 3 integrins. J. Cell Sci. 105(Pt 4):1001–1012, 1993.

    Google Scholar 

  39. Staton, C. A., S. M. Stribbling, S. Tazzyman, R. Hughes, N. J. Brown, and C. E. Lewis. Current methods for assaying angiogenesis in vitro and in vivo. Int. J. Exp. Pathol. 85:233–248, 2004.

    Article  Google Scholar 

  40. Sundaram, S., A. Echter, A. Sivarapatna, C. Qiu, and L. Niklason. Small-diameter vascular graft engineered using human embryonic stem cell-derived mesenchymal cells. Tissue Eng. Part A 20:740–750, 2014.

    Google Scholar 

  41. Waters, J. P., M. S. Kluger, M. Graham, W. G. Chang, J. R. Bradley, and J. S. Pober. In vitro self-assembly of human pericyte-supported endothelial microvessels in three-dimensional coculture: a simple model for interrogating endothelial-pericyte interactions. J. Vasc. Res. 50:324–331, 2013.

    Article  Google Scholar 

  42. Williams, M. A., and J. S. Solomkin. Integrin-mediated signaling in human neutrophil functioning. J. Leukoc. Biol. 65:725–736, 1999.

    Google Scholar 

  43. Witt, N., T. Y. Wong, A. D. Hughes, N. Chaturvedi, B. E. Klein, R. Evans, M. McNamara, S. A. Thom, and R. Klein. Abnormalities of retinal microvascular structure and risk of mortality from ischemic heart disease and stroke. Hypertension 47:975–981, 2006.

    Article  Google Scholar 

  44. Wu, T., B. Zhang, F. Ye, and Z. Xiao. A potential role for caveolin-1 in VEGF-induced fibronectin upregulation in mesangial cells: involvement of VEGFR2 and Src. Am. J. Physiol. Renal Physiol. 304:F820–F830, 2013.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank TuKiet Lam and Jean Kanyo at the W. M. Keck Mass Spectrometry and Proteomics Facility at Yale for their assistance with performing the mass spectrometry and protein identification. Support for L. A. B. is from NIH Grant 5T32DK101019-02. We extend our gratitude to Laura Niklason (Yale School of Medicine) for the kind gift of the SMC. Lastly, we acknowledge Yue Hou for use of the Matlab code to evaluate neutrophil ruffling.

Conflict of interest

Lola A. Brown, Parid Sava, Cesar Garcia, and Anjelica L. Gonzalez declare that they have no conflict of interest.

Ethical Standards

All human subject research was carried out in accordance with Yale University Human Investigation Committee (HIC) of the Internal Review Board (IRB) as part of the Human Research Protection Program guidelines and approved as HIC protocol #0902004786. No animal studies were performed for this article. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all donors who were included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjelica L. Gonzalez.

Additional information

Associate Editor Christine Schmidt oversaw the review of this article.

Lola A. Brown and Parid Sava contributed equally to this work.

This article is part of the 2015 Young Innovators Issue.

Anjelica L. Gonzalez is the Donna L. Dubinsky Assistant Professor of Biomedical Engineering at Yale University. Prior to her arrival at Yale, she obtained a B.S. in Biological Engineering from Utah State University and a Ph.D. in Computational Biology from Baylor College of Medicine. Her graduate research in Larry V. McIntire’s lab was focused on the development of synthetic biomaterials for investigation of integrin dependent cell migration. This work translated directly into her current research, which is focused on the development of experimental models of human microvasculature for investigation of immunological processes. This research has demonstrated usefulness in advancing the current paradigm of the leukocyte adhesion cascade, identifying biochemical and mechanical regulators of leukocyte recruitment during inflammation. Anjelica’s work in synthetic extracellular matrices and regulation of leukocyte function has also been translated to the advancement and creation of therapeutic devices for treatment of lymphomas and dermal wounds.

figure a

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1: Flow cytometric characterization of cultured PC isolated from human placental microvessels. Representative flow cytometry plots demonstrating that PC uniformly express the cell surface molecules NG2, CD90, PDGFR-β, and CD146 and the intracellular protein α-SMA. PC do not express the intracellular proteins SMMHC, a marker expressed by SMCs, CD31 or CD34, markers expressed by endothelial cells, or CD45, a marker expressed by leukocytes. Specific staining is shown by the bolded black line whereas isotype control is shown in grey.

Supplemental Table 1: Full mass spectrometry protein Identification of pericyte and smooth muscle cell derived proteins from each donor

Supplementary material 1 (TIFF 672 kb)

Supplementary material 2 (DOCX 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, L.A., Sava, P., Garcia, C. et al. Proteomic Analysis of the Pericyte Derived Extracellular Matrix. Cel. Mol. Bioeng. 8, 349–363 (2015). https://doi.org/10.1007/s12195-015-0408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-015-0408-5

Keywords

Navigation